Stage 2 DBPR Important Dates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Serving 100,000 or more</td>
<td>October 31, 2011</td>
<td>1st Quarter 2012</td>
<td>Peak Historical Month in 2012</td>
</tr>
<tr>
<td>2</td>
<td>Serving between 50,000 and 99,999</td>
<td>December 31, 2011</td>
<td>2nd Quarter 2012</td>
<td>Peak Historical Month in 2012</td>
</tr>
<tr>
<td>3</td>
<td>Serving between 10,000 and 49,999</td>
<td>October 1, 2012</td>
<td>2nd Quarter 2013</td>
<td>Peak Historical Month in 2013</td>
</tr>
<tr>
<td>4</td>
<td>Serving less than 10,000</td>
<td>October 1, 2012</td>
<td>3rd Quarter 2013</td>
<td>Peak Historical Month in 2013</td>
</tr>
</tbody>
</table>

* Systems that conducted the IDSE must start per compliance monitoring per their IDSE Report.

Stage 2 Monitoring Requirements

Ground Water Systems

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Population</th>
<th>Compliance Monitoring</th>
<th>FREQ</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW or GWP</td>
<td><500</td>
<td>Peak Month</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>GW or GWP</td>
<td>500 – 9,999</td>
<td>Peak Month</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>GW or GWP</td>
<td>10K – 99,999</td>
<td>Every 90 Days</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>GW or GWP</td>
<td>100K – 499,999</td>
<td>Every 90 Days</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>GW or GWP</td>
<td>≥ 500K</td>
<td>Every 90 Days</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

1 All systems must monitor during month of highest DBP concentrations.
2 All systems must take dual a sample set (TTHM and HAAS) at each site.

Surface Water Systems

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Population</th>
<th>Compliance Monitoring</th>
<th>FREQ</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW or SWP</td>
<td><500</td>
<td>Peak Month</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>SW or SWP</td>
<td>500 – 3,300</td>
<td>Every 90 Days</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>SW or SWP</td>
<td>3,301 – 9,999</td>
<td>Every 90 Days</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>SW or SWP</td>
<td>10K – 49,999</td>
<td>Every 90 Days</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>SW or SWP</td>
<td>50K – 249,999</td>
<td>Every 90 Days</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>SW or SWP</td>
<td>250K – 999,999</td>
<td>Every 90 Days</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>SW or SWP</td>
<td>1M – 4,999,999</td>
<td>Every 90 Days</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>SW or SWP</td>
<td>≥ 5M</td>
<td>Every 90 Days</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

1 All systems must monitor during month of highest DBP concentrations.
2 All systems must take dual a sample set (TTHM and HAAS) at each site.

Stage 2 Monitoring Requirements

Source Type
- GW or GWP
- SW or SWP

Population
- <500
- 500 – 9,999
- 10K – 99,999
- 100K – 499,999
- ≥ 500K

Compliance Monitoring
- Peak Month
- Every 90 Days

FREQ
- 2
- 4
- 6
- 8

TOTAL
- 1

1 All systems must monitor during month of highest DBP concentrations.
2 All systems must take dual a sample set (TTHM and HAAS) at each site.

Selecting Stage 2 DBPR Sites:

- Downstream of tanks
- Dead ends, but prior to last customers and prior to last hydrant or blowoff
- Hydraulic dead ends and mixing zones
- Downstream of booster chlorination
- Sites with difficulty maintaining residual
- Areas with low water use and low chlorine
- Areas of high historic TTHM and/or HAAS levels

Certified Lab Analysis

- **Total Trihalomethanes (TTHMs)**
 - Four analytes
 - Bromoform
 - Bromodichloromethane
 - Chloral
 - Chloroform

- **Haloacetic Acids (HAASs)**
 - 5 analytes
 - dibromoacetic acid
 - dichloroacetic acid
 - monobromoacetic acid
 - monochloroacetic acid
 - trichloroacetic acid

Notes:
- Contact a certified lab for the sample kit which contains multiple bottles for each monitoring site.
- Lab reports must contain the Public Water Supply Name and ID number and the sample locations.

Sending Required Info to LDHH

- Systems must send Stage 2 Compliance Monitoring Plan to LDHH for approval, in addition to:
 - Monitoring Plan Changes
 - TTHM and HAAS Data (certified lab report)
 - Operational Level Reports
- Label your Map with PWS Name and PWS ID
- Send all the above to:
 - DBP Compliance Manager
 - DHH-OPH Engineering Services
 - P.O. Box 4489
 - Baton Rouge, LA 70821
Stage 2 DBPR – Recordkeeping Requirements

Maintain the following for:
- Initial Distribution System Evaluation (IDSE) Reports – 10 years
- Monitoring Plans – as long as it applicable
- Chemical (i.e., TTHM-HAAS) data – 10 years
- LDHH correspondence (i.e., violation/monitoring letters, etc.) – 3 years
- Operational Evaluation Level (OEL) Reports – 10 years
- Public Notices – 3 years
- Consumer Confidence Reports – 3 years

Is My System in Compliance with the Stage 2 DBPR?

If my water system is required to:
- Monitor yearly, I am in compliance if sample result < MCL for every sample site
- Monitor every 90 days, I am in compliance if the Locational Running Annual Average calculated as (Q1 + Q2 + Q3 + Q4)/4 < MCL for every sample site

TTHM MCL = 0.080 mg/L
HAA5 MCL = 0.060 mg/L

Operational Evaluation Level Report: Is Required Every time when....

My water system is required to monitor every 90 days and at any site:

\[
\frac{Q_2 + Q_2 + 2Q_3}{4} > \text{MCL}
\]

- where
 - \(Q_3 \) = current quarter result multiplied by 2
 - \(Q_2 \) = previous quarter result
 - \(Q_1 \) = quarter before previous quarter result

Operational Evaluation Level Report: Is NOT required if...

The OEL Report is not required if:
- ALL individual sample results (this means do NOT average) for every quarter for all sites are below the MCL

TTHM MCL < 0.080 mg/L
HAA5 MCL < 0.060 mg/L

Operational Evaluation Level Report: What to Write and When to Submit?

- Submit the OEL report within 90 days of OEL exceedance
- The OEL Report must describe how to reduce high DBP levels and how each of the following may have affected DBP levels:
 - Storage tank operations
 - Excess storage capacity
 - Distribution system flushing
 - Treatment changes
 - Changes in sources or source water quality
 - Any issues that may contribute to TTHM and HAAS formation