Hansen’s Disease (Leprosy) On the Rise - Louisiana

Many physicians think of leprosy as a disease of the past and have the impression that the disease has been eradicated from Louisiana.

Leprosy was well established in Louisiana prior to the arrival of the Acadians. In the late 1700s, the migration of Acadians from Nova Scotia to Louisiana seems to have imported a few more cases of leprosy. It was only by the late 1880s that the numbers were high enough to cause the Louisiana State Board of Health to found a leprosy hospital at Carville in Iberville parish. By 1921 the hospital was taken over by the U.S. Government.

Incidence rates (new case registrations) of leprosy had increased by the 1880s (4.5 per 100,000) to reach a high of 12 per 100,000 in the late 1920s. These high rates were observed in South Louisiana (often named “French” Louisiana and New Orleans). North Louisiana was relatively spared with rates rarely exceeding 1.0 per 100,000.

Incidence

From the 1930s to the 1960s the number of new cases and incidence decreased progressively from about 0.5 per 100,000 population to 0.2 per 100,000 population. Case numbers then remained stable to around 5 to 10 new cases per year for an incidence of approximately 0.1. In the 1990s, the number of cases increased to 10 to 20 per year for an incidence increasing to 0.2 to 0.4 per 100,000. Trends from 1930 to 2008 are presented in Figures 1a and 1b.

Incidence by Sex

There has been a slight excess of leprosy among males from the earliest report (Table 1); however, the preponderance of males has increased since the 1990s. This type of shift is not usually expected and may reflect a shift in exposure patterns.
Table 1: Trend in Sex Ratio of Leprosy Cases by Decades
Louisiana, 1930s-2000s

<table>
<thead>
<tr>
<th>Period</th>
<th>Sum</th>
<th>Males</th>
<th>Females</th>
<th>Ratio Males:Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>I= Prior to 1930s</td>
<td>343</td>
<td>212</td>
<td>131</td>
<td>1.6:1</td>
</tr>
<tr>
<td>30s</td>
<td>115</td>
<td>65</td>
<td>50</td>
<td>1.3:1</td>
</tr>
<tr>
<td>40s</td>
<td>96</td>
<td>48</td>
<td>48</td>
<td>1.0:1</td>
</tr>
<tr>
<td>50s</td>
<td>40</td>
<td>18</td>
<td>22</td>
<td>0.8:1</td>
</tr>
<tr>
<td>60s</td>
<td>41</td>
<td>23</td>
<td>18</td>
<td>1.3:1</td>
</tr>
<tr>
<td>70s</td>
<td>38</td>
<td>20</td>
<td>18</td>
<td>1.1:1</td>
</tr>
<tr>
<td>80s</td>
<td>55</td>
<td>34</td>
<td>21</td>
<td>1.6:1</td>
</tr>
<tr>
<td>II=1930s to 1980s</td>
<td>385</td>
<td>208</td>
<td>177</td>
<td>1.2:1</td>
</tr>
<tr>
<td>90s</td>
<td>60</td>
<td>44</td>
<td>16</td>
<td>2.8:1</td>
</tr>
<tr>
<td>00s</td>
<td>96</td>
<td>69</td>
<td>27</td>
<td>2.6:1</td>
</tr>
<tr>
<td>III=1990s to 2000s</td>
<td>156</td>
<td>113</td>
<td>43</td>
<td>2.6:1</td>
</tr>
</tbody>
</table>

The difference in distribution by sex between period I and II is barely significant (OR=1.38, CI 1.01-1.87) while the difference between period II and III is high and significant (OR=0.45, CI=0.29-0.68).

Incidence by Age Group
Since it appears that there were some shifts in the incidence pattern by sex and age group, the data was analyzed for 3 different periods: 1930 to 1959, 1960 to 1989 and 1990 to 2008. (Figures 2a, 2b and 2c)

Incidence rates are lower among children and increase with age. That pattern is observed throughout all 3 periods.
The incidence pattern by sex and age group has changed over time. In the first period, there was very little difference between males and females until old age. In the second period, by age 45, males start to show higher incidence than females. Finally in recent times, male incidence is much higher than females, much earlier in life. Male children in the age group of 5 to 14 years, already show higher incidence than female children.

Announcements

Updates: Infectious Disease Epidemiology (IDES) Webpages
http://www.infectiousdisease.dhh.louisiana.gov

ANNUAL REPORTS: Creutzfeldt Jacob Disease; Hepatitis A; Leptospirosis; Summary of the Number of Reportable Diseases, 2008-2010; Varicella; Yellow Fever

EPIDEMIOLOGY MANUAL: Infection Control and Musical Instruments

FOODBORNE: Gingerbread House Recall

HAI: CMS FY11 HAI Reporting Webinar; CMS-NHSN Training and Enrollment Site; Complete Patient Safety Manual - September 2010; Quarterly Louisiana HAI Newsletters, Spring-2010, Summer-2010, Fall-2010

INFLUENZA: Weekly Report

SCHOOL RESOURCES: New Web Page

VETERINARY: Microbiological Makeup of Common Veterinary Infections, Third Quarter, 2010 - Canine, Equine and Feline
Incidence by Race / Ethnic Group

Throughout the time periods listed in Figure 3, Whites were a majority of cases (77.0%) followed by African-Americans (19.6%). Other groups are rarely represented: Hispanic, 1.6%; Asian / Pacific Islander, 1.6%; Other, 0.2%. There has been not much change in the distribution of cases throughout these time periods, from 73% to 77% for Whites without any significant changes.

In recent years (1990 to 2008) there has been a radical change in geographical distribution. Leprosy is on the increase throughout the state - in the Cajun parishes, and particularly in North Louisiana. Several authors had noticed this trend towards leprosy cases in northern Louisiana where it was rarely observed in earlier years (Figure 6).

Geographical Distribution

Leprosy occurred mainly in South Louisiana in the years between 1930 to 1959. The highest incidence rates were observed (0.5 per 100,000) in a narrow band of parishes from Orleans Parish in the east to Calcasieu Parish in the west (the “Cajun” parishes). In north Louisiana, cases were restricted to a few larger cities (Shreveport, Monroe and Alexandria) (Figure 4).

Between 1960 to 1989, there was a sharp decrease in incidence in the Cajun parishes where most incidences had decreased to 0.2 to 0.5 per 100,000 population. Meanwhile the northern parishes saw a moderate and widespread increase in incidence (0.02 to 0.2 per 100,000 population) (Figure 5).

Origin of Cases

The majority of cases are U.S. born (from 2000 to 2008: 94% were born in the U.S.) (Table 2).

<table>
<thead>
<tr>
<th>Country of Birth</th>
<th>Total</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>90</td>
<td>15</td>
<td>15</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>19</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Brazil</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vietnam</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Samoa</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Only one case was diagnosed before entry into the United States; all others were diagnosed after entry.

Clinical Classification

The majority of cases are multi-bacillary. From the years 2000 to 2008, the types ‘Borderline’ (B), ‘Borderline Lepromatous’ (BL) or ‘Lepromatous’ (LL) represent 70% of all cases.

(Continued on Page 4)
The distribution of cases by gender shows a slight preponderance of multi-bacillary cases (lepromatous and borderline) among males (77% L for males vs. 68% L for females, 6% B for males vs. 4% B for females) while the opposite is true for pauci-bacillary (indeterminate and tuberculoid) cases (1% I for males vs. 3% for females, 16% T for males vs. 24% for females), the difference being significant ($\chi^2=12.7$, $p=0.05$) (Table 3).

Table 3: Clinical Classification of Leprosy Cases - Louisiana, 2000-2008

<table>
<thead>
<tr>
<th>Hansen’s Disease Classification</th>
<th>Total</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indeterminate (I)</td>
<td>8</td>
<td>10.5%</td>
</tr>
<tr>
<td>Tuberculoid (TT)</td>
<td>4</td>
<td>5.3%</td>
</tr>
<tr>
<td>Borderline Tuberculoid (BT)</td>
<td>10</td>
<td>13.2%</td>
</tr>
<tr>
<td>Borderline (B)</td>
<td>1</td>
<td>1.3%</td>
</tr>
<tr>
<td>Borderline Lepromatous (BL)</td>
<td>19</td>
<td>25.0%</td>
</tr>
<tr>
<td>Lepromatous Leprosy (LL)</td>
<td>34</td>
<td>44.7%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>76</td>
<td>100.0%</td>
</tr>
<tr>
<td>Unspecified</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>

The distribution of cases by age group shows some difference by gender. Among males the proportion Multi-bacillary/Pauci-bacillary is fairly constant (from 85% -15% to 90%-10%). Among females, the proportion Multi-bacillary/Pauci-bacillary decreases with age (from 68%-32% to 56%-44%) with the exception of the 15 to 44 age group where the majority are multi-bacillary (96%) (Figures 7 and 8).

Delay Onset-Diagnosis

From 2000 to 2008, the majority of cases were diagnosed within one year of onset (55%). The delay between onset and diagnosis has been steadily reducing throughout the last 80 years. In the 1930s, 40% of cases were diagnosed within 2 to 5 years of onset and 20% more than 10 years after onset. The proportion of cases diagnosed within 1 year was hovering about 10% until the 1970s when it started increasing to 55% in current times. In the early days, there was no treatment; physicians likely delayed diagnosis because of the consequences for the patient of social ostracization. Mandatory institutionalization in the United States only stopped in the 1960s and outpatient treatment began. Those factors may have affected the diagnosing trends in Louisiana (Figure 9).

The Armadillo Connection

In the old days, leprosy was a very focal infection. Most cases were clustered in families or small population groups with very few sporadic cases. This pattern has been changing. Currently, the majority of cases had no family history of leprosy and occurred as sporadic cases with no connection to any cluster. The changes in gender, age group and geographic distribution all tend to show that the epidemiologic picture of leprosy is completely different.

In 1975, a leprosy-like infection was found among the nine-banded armadillo *Dasypus novemcinctus*. This was later shown by DNA studies to be identical to human leprosy. Areas with the highest rates of human leprosy were also areas with a high prevalence of leprosy in the armadillo population. Leprosy research on armadillos started in 1968, however, surveys of frozen specimens of armadillos showed that as early as 1961, armadillos were infected (17 per 182 positive sera, or 9.3%) on a wide scale. Numerous surveys that have since been carried-out, show that about 4% of armadillos had histo-pathological leprosy lesions and 16% had detectable IgM antibodies.

It appears that the prevalence rate among armadillos remained constant throughout the past years. The infection seems to be concentrated to the low-land coastal areas of Louisiana and Texas; only rare cases were found in higher lands of Texas, Arkansas or Mississippi.

Armadillos are not native to Louisiana. Armadillos slowly expanded their range north from Mexico beginning in the 1880s and have achieved very high densities here. No one really knows what allowed them to extend their range, but it is speculated that it was the elimination of normal predators as cattle operations increased in Texas. By 1957, armadillos had colonized south Louisiana.

Of the 32 patients for which armadillo contact was elicited, 15 said that they had contact with armadillos (about 50%). Although the connection between armadillo-leprosy and the changing epidemiology of leprosy in Louisiana is very suggestive, the exact mechanism of transmission is still being debated.
Leprosy Facts

- Leprosy is a chronic, mildly communicable disease of man which primarily affects the skin, mucous membranes, peripheral nerves, eyes, bones and testes due to *Mycobacterium leprae*, an acid fast bacillus related to the agent of tuberculosis.
- Leprosy was also named Hansen’s Disease after the Norwegian physician Gerhard Armauer Hansen who first identified *M. leprae*.
- Most (95%) of the human population is not susceptible to infection with *M. leprae*.
- Treatment with standard antibiotic drugs is very effective.
- Patients become noninfectious after taking only a few doses of medication and need not be isolated from family and friends.
- Diagnosis in the U.S. is often delayed because health care providers are unaware of Hansen’s disease and its symptoms.
- Early diagnosis and treatment prevents nerve involvement, the hallmark of leprosy and the disability it causes.
- Without nerve involvement, Hansen’s disease is a minor skin disease.
- In 2005, there were 166 new cases in the United States.
- Most (100 cases or 60%) of these new cases were reported in California, Louisiana, Massachusetts, New York and Texas.

Transmission

Skin-to-skin transmission has long been suspected to be the main route of transmission. Although bacilli are present in very large numbers in ulcers, they cannot be found on the unbroken skin. There are a few anecdotal cases of skin transmission: inoculations during surgical procedures and tattooing. Insects have been suspected but careful studies have shown that their role in transmission would only be a minor one (if any).

It seems that the airborne transmission is the more probable route of transmission. Nasal washings from untreated lepromatous cases have from 10,000 to 10,000,000 *M. leprae* bacilli. A majority of the lepromatous patients have bacilli in their nasal secretions. The primary infection site may be the respiratory tract or the skin. Aerosols with *M. leprae* have been successful in infecting immuno-suppressed mice.

Recently, contact with armadillos seems to have become a major mode of transmission in south Louisiana.

Susceptibility

There is evidence that not all people who are infected with *M. leprae* develop leprosy. Genetic factors have long been thought to play a role, due to the observation of clustering of leprosy around certain families, and the failure to understand why certain individuals develop lepromatous leprosy while others develop other types of leprosy. It is estimated that due to genetic factors, only 5% of the population is susceptible to leprosy. This is mostly because the body is naturally immune to the bacteria, and those persons who do become infected are experiencing a severe allergic reaction to the disease. However, the role of genetic factors is not entirely clear in determining this clinical expression. In addition, malnutrition and prolonged exposure to infected persons may play a role in development of the overt disease.

Incubation Period

The bacillus reproduces at a very slow rate and therefore the incubation period is an average of 3 to 5 years. It is difficult to find out precisely the incubation period because exposure time and degree of exposure are impossible to determine.

Classification for Treatment Purposes

Classification of Hansen’s Disease is based on clinical evaluation, skin smears from several sites and ideally at least an initial biopsy. The Ridley-Jopling classification of the disease is the one usually used in the U.S.. The following terms denote disease ranging from early localized to generalized: indeterminate (I); tuberculoid (TT); borderline tuberculoid (BT); mid-borderline (BB); borderline lepromatous (BL); lepromatous (LL).

While this classification gives considerable information about the disease in an immunologic sense, the use of the World Health Organization’s (WHO) limited duration multidrug therapy has led to the widespread adoption of the WHO classification. This classification includes only the following: single lesion paucibacillary (SLPB); paucibacillary (PB) i.e. those with 2 to 5 lesions; multibacillary (MB) i.e. those with 6 or more lesions.

In the U.S., generally only the terms paucibacillary and multibacillary are used when discussing drug regimens. Paucibacillary patients are those who are skin-smear negative and no evidence of more advanced disease on biopsy. Multibacillary patients are those who are skin-smear positive and/or have a biopsy indicating more advanced disease. Generally, PB disease is equivalent to I, TT, and BT disease in the Ridley-Jopling classification, and MB is equivalent to BB, BL, and LL disease.

Clinical Description:

Tuberculoid leprosy is characterized by one or more hypopigmented skin macules and anesthetic patches, where skin sensations are lost because of damaged peripheral nerves that have been attacked by the human host’s immune cells.

Borderline leprosy is of intermediate severity and is the most common form. Skin lesions resemble tuberculoid leprosy but are more numerous and irregular; large patches may affect a whole limb, and peripheral nerve involvement with weakness and loss of sensation is common. This type is unstable and may become more like lepromatous leprosy or may undergo a reversal reaction, becoming more like the tuberculoid form.

Lepromatous leprosy is associated with symmetric skin lesions, nodules, plaques, thickened dermis, and frequent involvement of the nasal mucosa resulting in nasal congestion and epistaxis (nose bleeds), but typically detectable nerve damage is late.

Delayed diagnosis of Hansen’s disease can have serious neurological consequences. The typical skin lesions and classic neuropathy of leprosy are readily recognized in countries where the disease is more common, but in the U.S. where leprosy is rare, it can be difficult to diagnose. **Physician awareness is key to the early diagnosis and treatment that can prevent disability.**

Consider the Diagnosis of Leprosy When...

A patient presents with non-responsive skin lesion and
- is an immigrant from a country with a high incidence of...
(Leprosy Facts ... Continued from Page 5)

leprosy
- is a U.S. resident with a history of foreign travel
- is a resident of Texas or Louisiana
- has a referral history of multiple physician/specialist and/or frequent emergency room visits.

Cardinal Signs
- Localized skin lesions: raised or flat; light or pigmented; sensory loss in lesion
- Thickened peripheral nerves
- Demonstrated acid-fact bacilli in lesion.

Laboratory Tests
- There are no serological or skin tests.
- A skin biopsy is needed for definitive diagnosis.
- A PCR (Polymerase Chain Reaction) for M. leprae DNA may be needed in special circumstances.

Recommended Treatment Regimens
Following are the general NHDP (National Hansen’s Disease Program) recommendations: daily rifampin, and for longer duration of treatment than the WHO recommendations, largely due to WHO’s cost considerations for developing countries; treatment that is more intensive and of longer duration is medically preferable.

Recommended duration of treatment is as follows:

- **Rifampicin**: 600 mg daily
- **Dapsone**: 100 mg daily

Recommended treatment for immunologically competent individuals, (e.g. those without immunodeficiency, immunosuppression, prolonged corticosteroid use, etc.) are as follows in Tables 1 and 2.

Table 1: Drug Therapy for Tuberculoid Adults

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dose</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dapsone</td>
<td>100 mg daily</td>
<td>12 months and then therapy discontinued</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>600 mg daily</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Drug Therapy for Lepromatous Adults

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dose</th>
<th>Duration*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dapsone</td>
<td>100 mg daily</td>
<td>24 months and then therapy discontinued</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>500 mg daily</td>
<td></td>
</tr>
<tr>
<td>Clofazimine**</td>
<td>50 mg daily</td>
<td></td>
</tr>
</tbody>
</table>

*The recommended durations of treatment are sufficient, even though large numbers of dead bacilli may remain in the tissues for several years before they are eliminated by physiological processes. There is no evidence that additional, prolonged treatment hastens the elimination of these dead organisms.

** Clofazimine, used for decades to treat HD around the world, is no longer available on the open market. Because it is no longer distributed commercially, the only way we can obtain the drug in the U.S. is to once again treat it as an investigational new drug (IND). The NHDP holds this IND for its use in treating HD in the U.S.

The National Hansen's Disease Program

The National Hansen’s Disease Program is the epicenter of Hansen’s disease (leprosy) care, research and information in the U.S. The program:
- Cares for patients at its facility at the Ochsner Medical Center in Baton Rouge.
- Oversees an ambulatory care network with 11 clinics in 7 States and Puerto Rico, and makes referrals for treatment.
- Conducts intramural Hansen’s disease (leprosy) biomedical research.
- Reaches out to medical professionals with a comprehensive Hansen’s disease (leprosy) training program.

The U.S. Government established the predecessor of the National Hansen’s Disease Program, the National Leprosarium in Carville, Louisiana, in 1917. Outpatient clinics were established in 1981.

These regional Hansen’s disease clinics were established to provide outpatient care for Hansen’s disease (leprosy) patients. The 11 community health programs are in: Boston, Chicago, Los Angeles, Miami, New York, Puerto Rico, San Diego, San Francisco, Seattle, Texas and Hawaii. Services provided include: diagnosis, treatment, follow-up, contact monitoring, disability prevention, education (professional, patient, public), maintenance of referral system for Hansen's disease health care services and maintenance of Hansen's disease registry and database.

Ambulatory Care Clinics

Individuals living in the continental United States, Puerto Rico or the U.S. Territories may receive medical care for the diagnosis and treatment of Hansen’s disease (leprosy)-related conditions at one of the 11 Federally-supported outpatient clinics in 8 States and Puerto Rico.

The services offered include:
- Confirmation of diagnosis through skin biopsies
- Medical care
- Medications
- Hospitalization for treatment of complications at the Ochsner Medical Center - Baton Rouge, Louisiana
- Clinical consultation for physician-referred patients with eye problems and those in need of reconstructive hand or foot surgery
- Professional and patient education materials and conferences.

For more information, please go to website http://www.hrsa.gov/hansens or phone 1-(800)-642-2477, weekdays 9 am to 5:30 pm ET for referral to one of 900 private physicians nationwide who have expertise in treating Hansen’s disease (Hawaii: 1-(808)-733-9831).
Table. Communicable Disease Surveillance, Incidence by Region and Time Period, November-December, 2010

<table>
<thead>
<tr>
<th>HEALTH REGION</th>
<th>TIME PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sep-Oct 2010</td>
</tr>
<tr>
<td>Vaccine-preventable</td>
<td></td>
</tr>
<tr>
<td>Hepatitis B Cases</td>
<td>2 1 2 2 0 0 0 0 2</td>
</tr>
<tr>
<td>Rate1</td>
<td>0.2 0.2 0.5 0.4 0 0 0 0 0.5</td>
</tr>
<tr>
<td>Measles</td>
<td>0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Mumps</td>
<td>0 1 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Rubella</td>
<td>0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Pertussis</td>
<td>1 1 0 0 0 0 0 4 2 1</td>
</tr>
<tr>
<td>Sexually-transmitted</td>
<td></td>
</tr>
<tr>
<td>HIV/AIDS Cases2</td>
<td>50 38 6 9 11 8 13 10 13</td>
</tr>
<tr>
<td>Rate1</td>
<td>5.0 6.6 1.6 1.7 4.0 2.7 2.6 2.9 3.0</td>
</tr>
<tr>
<td>Chlamydia Cases3</td>
<td>742 208 99 180 140 262 323 308 152</td>
</tr>
<tr>
<td>Gonorhea Cases3</td>
<td>241 39 30 46 23 85 125 135 41</td>
</tr>
<tr>
<td>Syphilis (P&S) Cases3</td>
<td>1 3 2 2 0 0 0 3 3</td>
</tr>
<tr>
<td>Enteric</td>
<td></td>
</tr>
<tr>
<td>Campylobacter Cases</td>
<td>3 4 1 5 2 1 3 2 4</td>
</tr>
<tr>
<td>Rate1</td>
<td>0.1 0.5 0.5 0.3 2.8 0.0 2.4 0.9 0.6</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>H. influenzae (other)</td>
<td>0 1 1 0 1 0 0 0 0</td>
</tr>
<tr>
<td>N. Meningitidis</td>
<td>0 0 0 1 0 1 0 1 2</td>
</tr>
</tbody>
</table>

1 = Cases Per 100,000.

2 = These totals reflect persons with HIV infection whose status was first detected during the specified time period. This includes persons who were diagnosed with AIDS at the time HIV was first detected. Due to delays in reporting of HIV/AIDS cases, the number of persons reported is a minimal estimate. Data should be considered provisional.

3 = Transition to a new system has delayed the morbidity reporting; Numbers may be artificially low; Per 100,000 population (2008 population estimate).

* Percent Change not calculated for rates or count differences less than 5.

Table 2. Diseases of Low Frequency, January-December, 2010

<table>
<thead>
<tr>
<th>Disease</th>
<th>Total to Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legionellosis</td>
<td>11</td>
</tr>
<tr>
<td>Lyme Disease</td>
<td>2</td>
</tr>
<tr>
<td>Malaria</td>
<td>5</td>
</tr>
<tr>
<td>Rabies, animal</td>
<td>10</td>
</tr>
<tr>
<td>Varicella</td>
<td>89</td>
</tr>
</tbody>
</table>

Table 3. Animal Rabies, November - December, 2010

<table>
<thead>
<tr>
<th>Parish</th>
<th>No. Cases</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcasieu</td>
<td>1</td>
<td>Skunk</td>
</tr>
<tr>
<td>Caddo</td>
<td>1</td>
<td>Bat</td>
</tr>
<tr>
<td>Lafayette</td>
<td>2</td>
<td>Skunk</td>
</tr>
</tbody>
</table>

Additional Rabies for Sep-Oct 2010 Timeframe - Bossier - 1 Skunk

Figure: Department of Health and Hospitals Regional Map
Sanitary Code - State of Louisiana
Part II - The Control of Diseases

LAC 51:II.105: The following diseases/conditions are hereby declared reportable with reporting requirements by Class:

Class A Diseases/Conditions - Reporting Required Within 24 Hours
Diseases of major public health concern because of the severity of disease and potential for epidemic spread-report by telephone immediately upon recognition that a case, a suspected case, or a positive laboratory result is known. In addition, all cases of rare or exotic communicable diseases, unexplained death, unusual cluster of disease and all outbreaks shall be reported.

- Anthrax
- Ablan influenza
- Botulism
- Brucellosis
- Cholera
- Diphtheria
- Haemophilus influenzae (invasive disease)
- Influenza-associated Mortality
- Poliomyelitis, paralytic
- Q Fever (Coxiella burnetii)
- Rabies (animal and human)
- Rubella (congenital syndrome)
- Rubella (German measles)
- Severe Acute Respiratory Syndrome-
- associated Coronavirus (SARS-CoV)
- Smallpox
- Staphylococcus Aureus, Vancomycin Intermediate or Resistant (VISA/VRSA)
- Typhoid Fever
- Viral Hemorrhagic Fever
- Yellow Fever

Class B Diseases/Conditions - Reporting Required Within 1 Business Day
Diseases of public health concern needing timely response because of potential of epidemic spread-report by telephone immediately upon recognition that a case, suspected case, or a positive laboratory result is known.

- Arthropod-Borne Neuroinvasive Disease and other infections (including West Nile, St. Louis, California, Eastern Equine, Western Equine and others)
- Aseptic meningitis
- Chancroid¹
- Escherichia coli, Shig-toxin producing (STEC), including E. coli 0157:H7
- Hantavirus Pulmonary Syndrome
- Haemophilus influenzae (invasive disease)
- Hepatitis A (acute disease)
- Hepatitis B (acute illness & carriage in pregnancy)
- Hepatitis B (perinatal infection)
- Hepatitis E
- Herpes (neonatal)
- Legionella (acute disease)
- Listeria
- Mumps
- Pertussis
- Salmonellosis
- Shigellosis
- Typhoid Fever
- Tuberculosis
- Trichomoniasis
- Typhoid Fever

Class C Diseases/Conditions - Reporting Required Within 5 Business Days
Diseases of public health concern needing timely response because of potential of epidemic spread-report by telephone immediately upon recognition that a case, suspected case, or a positive laboratory result is known.

- Acquired Immune Deficiency Syndrome (AIDS)³
- Acne Vulgaris
- Acyclovirus
- Anthrax
- Ablan influenza
- Botulism
- Brucellosis
- Cholera
- Diphtheria
- Haemophilus influenzae (invasive disease)
- Influenza-associated Mortality
- Poliomyelitis, paralytic
- Q Fever (Coxiella burnetii)
- Rabies (animal and human)
- Rubella (congenital syndrome)
- Rubella (German measles)
- Staphylococcus Aureus
- Staphylococcus Aureus, Methicillin/Resistance (MRSA), invasive infection
- Staphylococcus Aureus, Vancomycin Resistant (VRE), invasive infection
- Severe Acute Respiratory Syndrome—associated Coronavirus (SARS-CoV)
- Smallpox
- Staphylococcus Aureus, Vancomycin Intermediate or Resistant (VISA/VRSA)
- Typhoid Fever
- Tuberculosis
- Typhoid Fever

Class D Diseases/Conditions - Reporting Required Within 5 Business Days
Diseases of public health concern needing timely response because of potential of epidemic spread-report by telephone immediately upon recognition that a case, suspected case, or a positive laboratory result is known.

- Acne Vulgaris
- Anthrax
- Ablan influenza
- Botulism
- Brucellosis
- Cholera
- Diphtheria
- Haemophilus influenzae (invasive disease)
- Influenza-associated Mortality
- Poliomyelitis, paralytic
- Q Fever (Coxiella burnetii)
- Rabies (animal and human)
- Rubella (congenital syndrome)
- Rubella (German measles)
- Staphylococcus Aureus
- Staphylococcus Aureus, Methicillin/Resistance (MRSA), invasive infection
- Staphylococcus Aureus, Vancomycin Resistant (VRE), invasive infection
- Severe Acute Respiratory Syndrome—associated Coronavirus (SARS-CoV)
- Smallpox
- Staphylococcus Aureus, Vancomycin Intermediate or Resistant (VISA/VRSA)
- Typhoid Fever
- Tuberculosis
- Typhoid Fever

Case reports not requiring special reporting instructions (see below) can be reported by Confidential Disease Case Report forms (2430), facsimile (504) 219-4452, telephone (504) 219-4563, or 1-800-256-2748 or web based at https://ophrbld.dhh.state.la.us.

⁴Report on CDC72.5 (f.5.2431) card.
⁵Report to the Louisiana Genetic Diseases Program Office by telephone at (504) 219-4431 or facsimile at (504) 219-4452.
⁶Report to the Louisiana HIV/AIDS Program see www.lhiv.dhh.louisiana.gov for regional contact information, or call 504-568-7474.
⁷Report to the Section of Environmental Epidemiology & Toxicology: www.seet.dhh.louisiana.gov or 888-293-7020.

This public health document was published at a total cost of . Seven thousand copies of this public document were published in this first printing at a cost of . The total cost of all printings of this document, including reprints is . This document was published by to inform physicians, hospitals, and the public of current Louisiana morbidity status under authority of R.S. 40:36. This material was printed in accordance with the standards for printing for state agencies established pursuant to R.S. 43:31. Printing of this material was purchased in accordance with the provisions of Title 43 of Louisiana Revised Statutes.