IMPROVING OUTCOMES FOR INFANTS WITH BILIARY ATRESIA: TOWARDS UNIVERSAL NEWBORN SCREENING

Ryan Himes, MD

Section Head, Gastroenterology, Hepatology, & Nutrition

Medical Director, Pediatric Liver Transplant Program

Associate Chair, Pediatrics-Subspecialties

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

.....

ALIGNMENT

Creating SpACE <u>Specialty Access for</u> <u>Children Everywhere</u>

We are committed to Eliminating <u>uneven care</u> and <u>health outcomes</u> <u>disparities</u> in the way:

- > Children are referred to us
- > We diagnose children
- > We treat children

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

BILIARY ATRESIA

- Rapidly progressive fibro-obliterative process affecting extrahepatic biliary tree
- 1:10,000-1:15,000 births in US
- Pathophysiology
 - Viral, immune, environmental?
- Treatment is surgical
 - Kasai portoenterostomy
 - Liver transplantation
- Untreated, children succumb in first 2 years of life

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

BILIARY ATRESIA

Early surgical intervention is unequivocally associated with <u>better patient outcomes</u>

- Survival
- Avoiding/delaying liver transplant

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

Clin Liver Dis 26 (2022) 341-354

EARLY KASAI IMPROVES OUTCOMES

Study	Outcome	N	3	0 days	60 0	days	90 da	ys 120	days
United States 1976-1989	5-year overall survival	816	63%	44	4%	40	0%	29%	29%
Canada 1985-2002	4-year transplant-free	312	49%	36%			2	8%	
France 1986-2002	5-year transplant-free	695	58%	41% 42% 36% 26%		2	7%		
United States 1997-2000	2-year transplant-free	100	70%	54% 50%		5	0%		

Time of KP

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

∀Ochsner^{_}

Mysore et al, JPGN, 2019

FRANCE

- n=1,336
- 1986-2015

•

 Median age at KP 59 days; no era effect

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

.....

DAYS MATTERThe need for early Kasai portoenterostomy: a Western Pediatric
Surgery Research Consortium study

Fig.1 Predicted probabilities of transplant-free survival (TFS) by age at the time of Kasai portoenterostomy "Controlling for patient and surgeon-level factors, <u>each additional day of age toward</u> <u>operation was associated with a 2% decrease</u> <u>in likelihood of TFS</u> (OR 0.98, 95% CI 0.97– 0.99)".

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

A DIAGNOSTIC PROBLEM

2-3 months

Usually term gestation Normal birth weight Not visibly/mildly jaundiced No organomegaly Stools pigmented AST/ALT normal Direct bilirubin elevated

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

Weight falters Jaundice fails to improve Hepatomegaly develops Stools become acholic AST/ALT/GGT elevated Direct bilirubin continues to rise

Relatively common

•

- #1 reason for pediatric liver transplantation worldwide
- Early intervention = better outcomes
- <u>Lack of timely diagnosis</u> is THE chief barrier to early intervention

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

NEWBORN SCREENING IS A LEVER FOR EARLIER DX

Box 1. Wilson and Jungner classic screening criteria¹

- 1. The condition sought should be an important health problem.
- 2. There should be an accepted treatment for patients with recognized disease.
- 3. Facilities for diagnosis and treatment should be available.
- 4. There should be a recognizable latent or early symptomatic stage.
- 5. There should be a suitable test or examination.
- 6. The test should be acceptable to the population.
- 7. The natural history of the condition, including development from latent to declared disease, should be adequately understood.
- 8. There should be an agreed policy on whom to treat as patients.
- 9. The cost of case-finding (including diagnosis and treatment of patients diagnosed) should be economically balanced in relation to possible expenditure on medical care as a whole.
- 10. Case-finding should be a continuing process and not a "once and for all" project.

TABLE. Estimated number of U.S. children who would have been identified with disorders in 2006 using the American College of Medical Genetics recommended newborn screening panel,* based on incidence of these disorders in four state newborn screening programs during 2001–2006, by disorder

	California, Massachusetts, North Carolina, and Wisconsin (2001–2006) [†]			United States (2006)		
Disorder	Observed no. of cases	No. of births	Rate pe 100,000	r) (95% Cl [§])	Estimated no. of cases1	(95% CI)
Amino acid disorders						
Phenylketonuria (includes clinically significant hyperphenylalaninemia variants)	254	4,884,217	5.20	(4.76-5.68)	215	(197–235)
Maple syrup urine disease	14	2,214,329	0.63	(0.42-0.94)	26	(17-39)
Homocystinuria	6	2,214,329	0.27	(0.14-0.50)	11	(6-21)
Citrullinemia I	13	2,214,329	0.59	(0.38-0.89)	24	(16-37)
Argininosuccinic acidemia	4	2,214,329	0.18	(0.08-0.39)	7	(3-16)
Organic acid metabolism disorders						
Isovaleric acidemia	19	2,474,313	0.77	(0.54 - 1.08)	32	(22-45)
Glutaric acidemia type I	23	2,474,313	0.93	(0.68-1.26)	38	(28–52)
Hydroxymethylglutaric aciduria	2	2,474,313	0.08	(0.02-0.24)	3	(1-10)
Multiple carboxylase deficiency	2	2,474,313	0.08	(0.02 - 0.24)	3	(1-10)
Methylmalonic acidemia (mutase deficiency)	30	2,474,313	1.21	(0.93-1.58)	50	(38-66)
Methylmalonic acidemia CbIA,B	7	2,474,313	0.28	(0.16-0.50)	12	(6-21)
3-Methylcrotonyl-CoA carboxylase deficiency	60	2,474,313	2.43	(2.01 - 2.92)	100	(83-121)
Propionic acidemia	9	2,474,313	0.36	(0.22 - 0.60)	15	(9-25)
Beta-ketothiolase deficiency	4	2,474,313	0.16	(0.07-0.35)	7	(3-14)
Fatty acid oxidation disorders						
Medium-chain acyl-CoA dehydrogenase deficiency	143	2,460,473	5.81	(4.90-6.85)	239	(212-269)
Very long-chain acyl-CoA dehydrogenase deficiency	41	2,460,473	1.67	(1.20-2.26)	69	(55-86)
Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency	8	2,460,473	0.33	(0.14-0.64)	13	(8-23)
Trifunctional protein deficiency	1	2,460,473	0.04	(0.00-0.23)	2	(0-7)
Carnitine uptake defect	26	1,256,869	2.07	(1.35-3.03)	85	(63-113)
Hemodlobinopathies**						
Hb SS	777	4,403,132	17.65	(16.78–18.56)	1,128	(1,063-1,200)
HD SC	326	4,403,132	7.40	(6.85-8.01)	484	(442-532)
Hb S/β thalassemia	74	3,673,283	2.02	(1.70-2.38)	163	(131-205)
Other disorders						
Primary congenital hypothyroidism (excluding secondary, transient, or other)	2,544	4,884,217	52.09	(50.67–53.55)	2,156	(2,097–2,216)
Biotinidase deficiency (including partial)	19	1,268,943	1.50	(1.06-2.10)	62	(44-87)
Congenital adrenal hyperplasia (excluding non 21-hydroxylase deficiency)	121	2,474,313	4.89	(4.29-5.57)	202	(178–230)
Classical galactocomia wariant (evoluting GALK and GALE)	070	4 004 017	5.44	(4 05 5 00)	224	(205-244)
Cystic fibrosis (including nonclassical)	270	895,410	30.15	(27.66-32.87)	1,248	(1,145-1,360)
Total (all disorders)					6,439	(6,282-6,596)
 Available at http://www.acmg.net/resources/policies/nbs/nbs-s mia.tmo.l.and.bearing.loss 	ections.htm.	Two of the 29 di	sorders lis	sted in the screening	panel are not in	cluded: tyrosine-

mia type I and hearing loss. † Not all states screened for all disorders during this period. Number of births varies based on period in which the disorder was screened for in each state. © Confidence interval.

¹ Based on live birth occurrence data for 2006 (n = 4,138,349).

** Estimated number of cases was calculated based on race- and ethnicity-specific prevalence rates using the following categories: non-Hispanic white, non-Hispanic black, other (i.e., American Indian/Alaskan Native, Asian/Pacific Islander, and Hispanic), and unknown race/ethnicity.

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

SCREENING CAN ELIMINATE UNEVEN CARE

Creating SpACE <u>Specialty Access for</u> <u>Children Everywhere</u>

		Cohort (<i>N</i> = 69)	White patients (<i>N</i> = 50)	Non-White patients (<i>N</i> = 19)	p Value ^a
Age at first hepatology encounte days [IQR]	er, median	43 [20–72]	34 [17–65]	67 [42-133]	0.001
Age at biopsy, median days [IC)R]	53 [31–73]	43 [28–70]	68 [44–111]	0.02
Time from first encounter to bio median days [IQR]	ppsy,	2 [1–8]	4 [1–10]	1.5 [–43]	0.02
HPE, <i>n</i> (%)		52 (75%)	42 (84%)	10 (53%)	0.01

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

VOchsner

•••••••••••••••••••••••

Harpavat et al. (2018) JPGN 66:850-6. Bonn et al. (2024) JPGN April 3

HOW IS LOUISIANA DOING?

- Average age at Kasai: 58 days (median 55)
- 81% done after 30 DOL

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

VOchsner

n=26 patients, 2007-2020

EARLY DB LEVEL IDENTIFIES NEONATES WITH BA

- Retrospective assessment of patients with BA in Texas
- All 24 patients with BA had elevated Db in nursery
- Tb alone or Db/Tb ratio missed patients with BA

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

VOchsner

Harpavat S, Finegold MJ, and Karpen SJ (2011) Pediatrics 128: e1428-33.

DB LEVELS RISE OVER TIME IN BABIES WITH BA

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

Harpavat S, Finegold MJ, and Karpen SJ (2011) Pediatrics 128: e1428-33.

.....

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

VOchsner

*high = anything over the ULN for that laboratory ⁺ normal = ≤ stage 1 measure AND ≤ 1 mg/dL

.....

Prospective study • 11,636 neonates

Test 1: Db/Cb ≤60 hours-of-life

Test 2: Db/Cb at or before 1st well-child visit

Newborn Bilirubin Screening for Biliary Atresia

TO THE EDITORS: Biliary atresia accounts for ap- 95th percentile reference interval in their laboraproximately 60% of the liver transplantations in tory. In stage 2, infants were considered to be infants younger than 1 year of age. These complicated early transplantations can be prevented only with the use of the Kasai hepatoportoenterostomy. The success of the Kasai procedure is ing infants who were undergoing liver evaluation varied, but a good outcome is more likely if the at the two subspecialty-care pediatric hospitals operation is performed before 30 to 45 days of in Houston. life.1 Unfortunately, in the United States, infants with biliary atresia are usually identified later age, 14 days), of whom 3 required an invasive and the average age at surgery is 60 to 70 days ²

positive if they had rising concentrations on retesting at (or before) the first well-child visit. All cases of biliary atresia were identified by track-

A total of 11 infants retested positive (median

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

PROSPECTIVE STUDY #1

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

VOchsner

*high = anything over the ULN for that laboratory ⁺ normal = \leq stage 1 measure AND \leq 1 mg/dL

.....

<u>11 Stage 2 Positive Tests</u>

- Biliary atresia (2)
- Alpha-1 AT MZ (1)
- Rh-incompatibility (1)
- Prematurity, infection (1)
- Resolved w/ follow-up (6)

		Biliary	Atresia			
		+	-			
Test 1	+	2	119	121		
Results	-	0	11,515	11,515		
		2	11,634	11,636		7 Were not retested 3 Died early
		+	-			2 Were withdrawn by physician
Test 2	+	2	9	11		2 Missed appointment
Results	-	0	103	103		
		2	112	114	-	
	_					-
	Ν	let Sensitivity	100.0% (95%	6 CI, 19.8	-100.	0)
		Net Specificity	99.9% (95%	6 CI, 99.8	-99.9)
Positive	Pro	edictive Value	18.2% (95%	6 CI, 3.2-	52.2)	
Figure 1	. Re	esults of a Tw	o-Stage Scree	ening Stra	ategy	for Biliary Atresia,

July 2013 through September 2014.

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

PROSPECTIVE STUDY #2

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

Ochsner * Children's

Harpavat S *et al*, 2020, JAMA

Figure 2. Newborn Direct or Conjugated Bilirubin Screening for Biliary Atresia

Stage 1	Positive screening result	Negative screening result	Total No.
Positive	7	1347	1354
Negative	0	121925	121925
Total	7	123272	123279
	Desitive	Negetive	
Stage 2	Positive screening result	Negative screening result	Total No.
Stage 2 Positive	Positive screening result 7	Negative screening result 112	Total No. 119
Stage 2 Positive Negative	Positive screening result 7 0	Negative screening result 112 1215	Total No. 119 1215

Fotal	Positive screening result	Negative screening result	Total No.
Positive	7	112	119
Vegative	0	123140	123140
Fotal	7	123252	123259

	% (95% CI)
Sensitivity	100.0 (56.1-100.0)
Specificity	99.9 (99.9-99.9)
PPV	5.9 (2.6-12.2)
NPV	100.0 (100.0-100.0)

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

VOchsner

Harpavat S et al, 2020, JAMA

119 positive stage 2

7 biliary atresia

NPV indicates negative predictive value; PPV, positive predictive value.

^a There were 20 newborns who were not retested in stage 2 because 13 died, the physician refused to test in 4, and there were transportation problems for 3.

Table 2. Diagnoses and Evaluation for False-Positive Screening Results (n = 112)

Description of diagnosis and evaluation	No. (%)
Type of diagnosis	
Not determined	59 (52.7)
Cholestasis-associated conditions ^a	17 (15.2)
Heterozygosity in cholestasis-related genes ^b	12 (10.7)
Cholestatic liver diseases ^c	9 (8.0)
Congenital infections ^d	8 (7.1)
Excessive red blood cell clearance	7 (6.3)
Type of evaluation performed	
Additional direct or conjugated bilirubin testing only	28 (25.0)
Additional laboratory testing	25 (22.3)
Additional noninvasive imaging	38 (33.9)
Liver biopsy with or without percutaneous transhepatic cholangiogram	20 (17.9)
Intraoperative cholangiogram	1 (0.9)

 Included trisomy 21 (5 cases), gastroschisis (4 cases), trisomy 18 (3 cases), portosystemic shunt (2 cases), maternal lupus (1 case), omphalocele (1 case), and panhypopituitarism (1 case).

- ^b The gene names appear in eTable 7 in the Supplement.
- ^c Included Alagille syndrome
 (4 cases), a₁ antitrypsin deficiency
 (3 cases), ABCB11 deficiency (1 case), and choledochal cyst (1 case).
- ^d Included cytomegalovirus (3 cases), syphilis (3 cases), coxsackievirus (1 case), and rubella (1 case).

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

SCREENING LEADS TO TIMELIER KASAI

○ Not participating in screening^a
 △ Detected by screening at study hospitals
 □ Detected by screening at nonstudy hospitals

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

Harpavat S et al, 2020, JAMA

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

.....

Ochsner * Children's

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

The Centers for Disease Control and Prevention (CDC), National Vital Statistics Reports (NVSR), Vol. 68, No. 13: Births: Final Data for 2018, November 27, 2019.

DIAGNOSTIC INVESTIGATIONS

59 patients

- 25% follow-up bilirubin only (15 infants)
- 22% other lab testing (13 infants)
- 34% non-invasive imaging (20 infants)
- 19% liver biopsy±PTC (11 infants)

WHAT ABOUT COST*?

- Stage 1: ~\$288,464 (59,600 births x \$4.84)
- Stage 2: ~\$3,175 (656 patients x \$4.84)
- Diagnostics: ~\$20,306 (59 patients)
- Annual statewide cost ~\$311,945

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

Charges based on Ochsner's charge master-2021

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

Texas Children's Hospital cohort

DB SCREENING IN LOUISIANA

- Initiated March 2021 at Ochsner Baptist
- Subsequently expanded to Ochsner Kenner, Ochsner WB & Ochsner Baton Rouge
- 18,733 neonates screened through February 29, 2024 (96.4%)
- Step 1 positivity rate 0.7% (128 babies)
 - 2 babies with biliary atresia (~1:9,400 births)

PATIENT #1; 39-WEEK LGA MALE

- Db 1.5 (Tb 11.1) on DOL 2
- AST 62, ALT 20, GGT 739
- Liver US (DOL 3)

- DOL 7: IR cholangiogram & liver bx
- DOL 12: Intraoperative cholangiogram and Kasai
- Now 2 yrs post-Kasai
 - AST 52, ALT 25, GGT 12, Tb 0.3
 - No post-Kasai hospitalizations

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

PATIENT #2; 38-WEEK FEMALE

- Induced for known unbalanced AV canal & hypoplastic RV; situs inversus
- Db 0.8 (Tb 5.6) on DOL 2
- AST 36, ALT 11, GGT 366
- Liver US (DOL 2): situs inversus, polysplenia, preduodenal PV, interrupted IVC, hypoplastic GB

- DOL 35: IR cholangiogram & liver bx
- DOL 39: Intraoperative cholangiogram and Kasai
- Now 16-mo post-Kasai
 - AST 34, ALT 19, GGT 25, Tb 0.1
 - No post-Kasai liver-related hospitalizations

COMPARATIVE OUTCOMES OF PATIENTS FROM NON-SCREENING NURSERIES

- 10 infants with BA born at non-screening hospitals but referred to Ochsner during same period
- 5 transplanted
- 1 on the transplant waitlist

SUMMARY: UNIVERSAL NEWBORN SCREENING FOR BILIARY ATRESIA...

- Is feasible using existing technology and systems of care
- Is discrete, objective, and highly sensitive
- Reduces time to diagnosis \rightarrow Kasai \rightarrow improving TFS
- Associated with modest costs, offset at least in part, by savings from avoiding early transplantation

THANK YOU FOR YOUR COLLABORATION!

ryan.himes@ochsner.org

713-882-0032

GASTROENTEROLOGY, HEPATOLOGY, & NUTRITION

• Ochsner 📩

ldren's

