

Evolent Clinical Guideline 7295 065 for Heart Catheterization

Guideline or Policy Number: Evolent_CG_7295 065	Applicable Codes	
<p><i>"Evolent" refers to Evolent Health LLC and Evolent Specialty Services, Inc.</i></p> <p>© 2026 Evolent. All rights Reserved.</p>		
Original Date: <u>January 2026</u>	Last Revised Date: <u>July 2025</u>	Implementation Date: <u>January 2026</u>

TABLE OF CONTENTS

STATEMENT	3
GENERAL INFORMATION.....	3
PURPOSE.....	3
CLINICAL REASONING	3
INDICATIONS FOR INVASIVE CORONARY ARTERIOGRAPHY	4
GENERAL	4
STABLE ISCHEMIC HEART DISEASE.....	4
CORONARY CTA (CCTA) ABNORMALITIES	54
HEART FAILURE WITH LEFT VENTRICULAR DYSFUNCTION	5
VENTRICULAR ARRHYTHMIAS	5
PRIOR TO NON-CORONARY INTERVENTION AND CARDIAC SURGERY	5
HYPERTROPHIC CARDIOMYOPATHY (HCM).....	6
POST CARDIAC TRANSPLANTATION	6
HEMODYNAMIC ASSESSMENT	6
INDICATIONS FOR ASCENDING AORTOGRAPHY	7
CODING AND STANDARDS	7
CODES.....	7
APPLICABLE LINES OF BUSINESS	7
BACKGROUND	87
DEFINITIONS.....	87
<i>Diamond Forrester Table</i>	98
<i>Websites for Global Cardiovascular Risk Calculators*</i>	1140
AUC SCORE	1342
ACRONYMS/ABBREVIATIONS	1342
SUMMARY OF EVIDENCE	1413
ANALYSIS OF EVIDENCE.....	1514
POLICY HISTORY	1615
LEGAL AND COMPLIANCE	1746

GUIDELINE APPROVAL	<u>1746</u>
Committee.....	<u>1746</u>
DISCLAIMER	<u>1746</u>
REFERENCES.....	<u>1847</u>

STATEMENT

General Information

- *It is an expectation that all patients receive care/services from a licensed clinician. All appropriate supporting documentation, including recent pertinent office visit notes, laboratory data, and results of any special testing must be provided. If applicable: All prior relevant imaging results and the reason that alternative imaging cannot be performed must be included in the documentation submitted.*
- Where a specific clinical indication is not directly addressed in this guideline, medical necessity determination will be made based on widely accepted standard of care criteria. These criteria are supported by evidence-based or peer-reviewed sources such as medical literature, societal guidelines and state/national recommendations.
- The guideline criteria in the following sections were developed utilizing evidence-based and peer-reviewed resources from medical publications and societal organization guidelines as well as from widely accepted standard of care, best practice recommendations.

Purpose

Heart catheterization is an invasive angiographic procedure used to evaluate the presence and extent of coronary artery disease (CAD).

In addition to angiography, it can also include ventriculography, aortography, acquisition of hemodynamic data, measurement of cardiac output, detection and quantification of shunts and flows, intravascular ultrasound (IVUS), and fractional flow reserve (FFR)/instantaneous wave free ratio (iFR) for determination of a lesion's hemodynamic severity. CAD stenosis $\geq 70\%$ ($\geq 50\%$ in the left main coronary artery) is considered clinically significant or obstructive CAD.

(1,2,3,4)(1-4)

Clinical Reasoning

All criteria are substantiated by the latest evidence-based medical literature. To enhance transparency and reference, Appropriate Use (AUC) scores, when available, are diligently listed alongside the criteria.

This guideline first defaults to AUC scores established by published, evidence-based guidance endorsed by professional medical organizations. In the absence of those scores instances where an AUC has not been established through prior publication, we adhere to a standardized practice of assigning an AUC score of 6. This score is determined by considering variables that ensure the delivery of patient-centered care in line with current guidelines, with a focus on achieving benefits that outweigh associated risks. This approach aims to maintain a robust foundation for decision-making and underscores our commitment to upholding the highest standards of care. (5,6,7,8,9)(5-9)

INDICATIONS FOR INVASIVE CORONARY ARTERIOGRAPHY (1,10,11,12)(1,10–13)

General

- Typical angina with new onset or evolving ischemic electrocardiogram (ECG) changes
- Prinzmetal's or variant angina (pain experienced at rest with ST elevation) on guideline-directed medical therapy (GDMT)
- New onset or worsening of the patient's previously known anginal symptoms in a patient with a history of coronary artery bypass grafting (CABG) or percutaneous coronary intervention (PCI) (**AUC Score 7**) (3)(4)
- Symptomatic patients with a high pretest probability (**AUC Score 7**) (3)(4)
- ~~Unheralded syncope (not near syncope), where the etiology is unclear~~
- Patient with CAD and symptoms of angina with intermediate or high-risk findings on non-invasive imaging stress test including stress induced left ventricular (LV) dysfunction.

Stable Ischemic Heart Disease

- Exercise electrocardiogram (ECG) stress test with high-risk findings, such as Duke Score \leq -11, ST-segment elevation, exercise-induced hypotension, exercise-induced ventricular tachycardia (VT), or greater than 1.0 mm persistent prolonged ST-segment depression (> 1 mm) in multiple ECG leads into recovery for 5 minutes or greater (11)(11)
- Ischemia at low threshold on stress-testing with or without an abnormal decrease in normal systolic blood pressure response during exercise
- Stress imaging with high-risk findings moderate to severe ischemia (AUC Score 9) (4)(3) (see Definitions)
- ~~Stress imaging with intermediate risk findings (see Background section) in a patient with one of the following:~~
 - ~~Symptoms consistent with ischemia unresponsive to guideline-directed medical therapy (GDMT)~~ (11)
 - ~~Unsatisfactory quality of life due to angina; interfering with the patient's occupation or the ability to perform usual activities~~ (1)
 - ~~Ejection fraction (EF) $< 50\%$~~ (4)
- Non-invasive test with low-risk findings with new, worsening, or limiting symptoms with reasonable suspicion of cardiac origin despite optimal medical therapy (GDMT/OMT) or inability to tolerate guideline-directed medical therapy (GDMT) (4,10,11)(1,10,11)
- New, worsening, or limiting symptoms, with known unrevascularized obstructive coronary artery disease (CAD), in a patient eligible for revascularization (1,10)(4,10)
- Post STEMI with "culprit only" revascularization and plan for further PCI of non-culprit lesion (14)(13)

- Before high-risk non-cardiac surgery in patients who have evidence of ischemia by non-invasive testing.
- Discordant, equivocal, or inconclusive non-invasive evaluation in patients with suspected symptomatic stable ischemic heart disease, including the following ^{(3,4,11)(3,11)}:
 - Low risk stress imaging with high-risk stress ECG response or stress induced typical angina ⁽⁴⁾
 - Equivocal, uninterpretable, or inconclusive stress imaging due to issues of attenuation or other problems with interpretability ^(1,11)

Coronary CTA (CCTA) Abnormalities

- Symptomatic patient with one of the following ^{(1,11,121,11,12)(1,11,13)}:
 - One vessel with \geq 50% stenosis (**AUC Score 7**) ⁽³⁾ ⁽⁴⁾
 - A stenosis of 40-90% and FFR-CT \leq 0.8 ⁽¹⁵⁾ ~~(14)~~ ^(AUC Score 8)
 - \geq 50% left main stenosis, even if asymptomatic

Heart Failure with Left Ventricular Dysfunction

- New heart failure, cardiomyopathy, or wall motion abnormality in patients who are candidates for coronary revascularization, including one of the following ^{(1,11,16)(1,4,11,1516)} (**AUC Score 8**) ⁽³⁾⁽⁴⁾:
 - Newly recognized heart failure in patients with known or suspected CAD
 - Symptomatic heart failure or ischemia with new, unexplained wall motion abnormality ^{(1,11)(1,11)}
 - Structural abnormality (severe mitral regurgitation or ventricular septal defect) with reason to suspect ischemic origin
 - Deterioration in clinical status of heart failure or cardiomyopathy requiring invasive evaluation for guidance or alteration in therapy
 - Clarification of the diagnosis of myocarditis versus acute coronary syndrome ⁽¹⁷⁾

Ventricular Arrhythmias

- Ventricular arrhythmias, without identified non-cardiac cause:
 - Following recovery from unexplained sudden cardiac arrest ⁽¹⁸⁾ ⁽⁴⁸⁾
 - Sustained ventricular tachycardia (VT) or VF (**AUC Score 7**) ^{(3)(4,11)}
 - Exercise-induced VT (**AUC Score 7**) ^{(3)(4,11)}
 - Ventricular fibrillation (VF) (**AUC score 8**) ⁽³⁾⁽¹¹⁾

Prior to Non-Coronary Intervention and Cardiac Surgery

- Evaluation of coronary anatomy, with consideration of coronary revascularization, prior

to cardiac surgery in patients with any of the following ^(19,20,21,22)₍₁₉₋₂₂₎:

- Symptoms of angina
- Stress imaging with evidence of ischemia
- Decreased LV systolic function (ejection fraction (EF) < 50%)
- History of CAD
- Coronary risk factors, including men > 40 and postmenopausal women⁽²²⁾
- Non-invasive data that is inconclusive
- Severe valve disease
- Requirement for detailed assessment of coronary artery anatomy prior to aortic valve homograft surgery, pulmonary autograft (Ross procedure), or aortic root procedure
- Patients undergoing transcatheter aortic valve replacement (TAVR) or other transcatheter valve procedures
- Can be done pre-organ transplant when required by transplant center protocol in place of, but not in addition to an imaging study

Hypertrophic Cardiomyopathy (HCM)

- Patients with HCM, who are candidates for sSeptal rReduction tTherapy (SRT), and for whom there is uncertainty of left ventricular outflow tract (LVOT) obstruction on noninvasive imaging studies, invasive hemodynamic assessment with cardiac catheterization is recommended⁽²³⁾₍₂₃₎
- In patients with symptoms or evidence of myocardial ischemia (CCTA also allowed)
- Prior to surgical myectomy in HCM patients who are at risk for coronary atherosclerosis (CCTA also allowed)

Post Cardiac Transplantation

- Assessment for allograft vasculopathy annually⁽²⁴⁾₍₂₄₎

Hemodynamic Assessment

- Indications for angiographic and/or hemodynamic assessment of valvular function or shunt physiology^(11,19,25)_(11,19,25)
 - Assessment of bioprosthetic valve when transthoracic echocardiography (TTE) and transesophageal echocardiography (TEE) were inadequate, and cardiac magnetic resonance (CMR) or cardiac computed tomography (CCT) are not available
 - Assessment of mechanical valve prostheses when TTE and TEE are inadequate and CCTA is not available
 - Discordance between non-invasive data and clinical impression of severity of valvular disease
 - Evaluation of indeterminate shunt anatomy or shunt flows/ratio

- Indications for hemodynamic assessment only (11,25)(11,25)
 - Assessment of constrictive and restrictive physiology
 - Assessment of pulmonary hypertension when non-invasive data provides inadequate information for management, or to evaluate response to intravenous drug therapy
 - Assessment of hemodynamics in heart failure, cardiomyopathy, or adult congenital heart disease, when
 - Non-invasive data is discordant or conflicts with the clinical presentation
 - Non-invasive data is inadequate for clinical management

INDICATIONS FOR ASCENDING AORTOGRAPHY

(19,21,22)(19,21,22)

- Evaluation of aortic root dilatation in patients with severe aortic stenosis and regurgitation prior to valve surgery
- Evaluation of aortic root, ascending aortic aneurysm prior to repair
- Evaluation central shunts, coarctation and great vessels
- Bypass graft identification at the time of left heart catheterization
- Disease affecting the aorta and coronary arteritis in which coronary artery involvement is suspected.

CODING AND STANDARDS

Coding

CPT Codes

93452, 93453, 93454, 93455, 93456, 93457, 93458, 93459, 93460, 93461, +93462, +93463, +93464, 93531, 93532, 93533, 93563, 93564, +93565, +93566, +93567, +93568, 93573, 93574, 93595, 93596, 93597, 93598

Applicable Lines of Business

<input checked="" type="checkbox"/>	CHIP (Children's Health Insurance Program)
<input checked="" type="checkbox"/>	Commercial
<input checked="" type="checkbox"/>	Exchange/Marketplace

<input checked="" type="checkbox"/>	Medicaid
<input checked="" type="checkbox"/>	Medicare Advantage

BACKGROUND

Heart catheterization is the passage of a thin flexible tube (catheter) into the left or right heart systems via arteries or veins, respectively, for the purposes of hemodynamic measurements, acquisition of blood samples from specific locations, and/or the injection of radiopaque medium for the purposes of visualizing vascular anatomy. Coronary angiography is the passage of a catheter into the left side of the heart to diagnose or treat blockages of coronary arteries.

Definitions

- Stable Patients without Known CAD fall into 2 categories^{(1,3,4) (4,3,4)}:
 - Asymptomatic**, for whom global risk of CAD events can be determined from coronary risk factors, using calculators available online (see Global Cardiovascular Risk Calculators section)
 - Symptomatic**, for whom the pretest probability that chest-related symptoms are due to clinically significant CAD is estimated
- The medical record should provide enough detail to the Three tTypes of cGhest pPain (4) or Discomfort and Pretest Probability of CAD⁽³⁾:
 - Likely Anginal symptoms encompass chest/epigastric/shoulder/arm/jaw pain, chest pressure/discomfort occurring with exertion or emotional stress and relieved by rest, nitroglycerine or both
 - Less-Likely Anginal symptoms include dyspnea, or fatigue not relieved by rest/nitroglycerin, as well as generalized fatigue or chest discomfort with a time course not indicative of angina (e.g., resolving spontaneously within seconds or lasting for an extended period unrelated to exertion)
 - Typical Angina (Definite) is defined as including all 3 characteristics:
 - Substernal chest pain or discomfort with characteristic quality and duration
 - Provoked by exertion or emotional stress
 - Relieved by rest and/or nitroglycerine
 - Atypical Angina (Probable) has only 2 of the above characteristics
 - Non-anginal Chest Pain/Discomfort has only 0 - 1 of the above characteristics
- Risk Factors for Coronary disease include (but not limited to): diabetes mellitus, smoking, family history of premature CAD (men age less than 55, females less than 65), hypertension, dyslipidemia
- Beginning 2023, the classification terms for angina were updated within the ACC's

Multimodality Appropriate Use Criteria for the Detection and Risk Assessment of Chronic Coronary Disease to Less Likely Anginal Symptoms and Likely Anginal Symptoms. Previously, the document referred to “Typical Angina”, “Atypical Angina” and “Non-Anginal” symptoms, defined by the Diamond Forrester Table. We still provide this information for your reference

- The medical record should provide enough detail to establish the type of chest pain. From those details, the pretest probability of obstructive CAD is estimated from the Diamond Forrester Table below, recognizing that in some cases multiple additional coronary risk factors could increase pretest probability.^(1,4)

Diamond Forrester Table (26,27)(3,26)

Age (Years)	Gender	Typical/ Definite Angina Pectoris	Atypical/ Probable Angina Pectoris	Non-anginal Chest Pain
≤ 39	Men	Intermediate	Intermediate	Low
	Women	Intermediate	Very low	Very low
40 – 49	Men	High	Intermediate	Intermediate
	Women	Intermediate	Low	Very low
50 – 59	Men	High	Intermediate	Intermediate
	Women	Intermediate	Intermediate	Low
≥ 60	Men	High	Intermediate	Intermediate
	Women	High	Intermediate	Intermediate

Very Low: < 5% pretest probability of CAD, usually not requiring stress evaluation

Low: 5 - 10% pretest probability of CAD

Intermediate: 10% - 90% pretest probability of CAD

High: > 90% pretest probability of CAD

- Coronary Risk Categories Derived from Non-invasive Testing ^{(1,3,13)(1,4,12)}
 - **High risk (> 3% annual death or MI)**
 - Severe resting left ventricular (LV) dysfunction (LVEF < 35%) not readily explained by non-coronary causes
 - Resting perfusion abnormalities ≥ 10% of the myocardium in patients without prior history or evidence of myocardial infarction (MI)
 - Stress ECG findings including ≥ 2 mm of ST-segment depression at low workload or persisting into recovery, exercise-induced ST-segment elevation, or exercise-induced ventricular tachycardia (VT)/ventricular fibrillation (VF)

- Severe stress-induced left ventricular (LV) dysfunction (peak exercise EF < 45% or drop in EF with stress $\geq 10\%$)
- ~~Stress-induced perfusion abnormalities Moderate to severe ischemia on nuclear stress imaging defined as~~ involving $\geq 10\%$ ischemic myocardium, or stress segmental scores indicating multiple abnormal vascular territories
- Stress-induced LV dilation. Transient ischemic dilation (TID) is the ratio of left ventricular area immediately post-exercise divided by the area of the 4-hour redistribution image, with an abnormal ratio defined as > 1.12 ⁽²⁷⁾⁽²⁸⁾
- Inducible wall motion abnormality (involving ≥ 2 segments or ≥ 2 vascular territories)
- Wall motion abnormality developing at low dose of dobutamine (≤ 10 mg/kg/min) or at a low heart rate (< 120 beats/min)
- Multivessel obstructive CAD ($\geq 70\%$ stenosis) or left main stenosis ($\geq 50\%$ stenosis) on CCTA
- **Intermediate risk (1% to 3% annual death or MI)**
 - Mild or moderate resting LV dysfunction (EF 35% to 49%) not readily explained by non-coronary causes
 - Resting perfusion abnormalities in 5% to 9.9% of the myocardium in patients without a history or prior evidence of MI
 - ≥ 1 mm of ST-segment depression occurring with exertional symptoms
 - Stress-induced perfusion abnormalities involving 5% to 9.9% of the myocardium or stress segmental scores (in multiple segments) indicating 1 vascular territory with abnormalities but without LV dilation
 - Inducible wall motion abnormality involving 1 segment or 1 vascular territory
 - CAC score 100 to 399 Agatston units (only for use in primary prevention, not for heart catheterization decision making) ^{(1,3,11,29)(1,4,11,28)}
 - One vessel CAD with $\geq 70\%$ stenosis or moderate CAD stenosis (50% to 69% stenosis) in ≥ 2 arteries on CCTA
- **Low risk (< 1% annual death or MI)**
 - Low-risk treadmill score (score ≥ 5) or no new ST segment changes or exercise-induced chest pain symptoms, when achieving maximal levels of exercise
 - Normal or small myocardial perfusion defect at rest or with stress involving $< 5\%$ of the myocardium
 - Normal stress or no change of baseline wall motion abnormalities during stress
 - CAC score < 100 Agatston units (only for use in primary prevention, not for heart catheterization decision making) ^{(1,3,11,29)(1,4,11,28)}
 - No coronary stenosis $> 50\%$ on CCTA
- Global Risk of Cardiovascular Disease

- **Global risk** of CAD is defined as the probability of manifesting cardiovascular disease over the next 10 years and refers to **asymptomatic** patients without known cardiovascular disease. It should be determined using one of the risk calculators below. A high risk is considered greater than a 20% risk of a cardiovascular event over the ensuing 10 years.
 - **CAD Risk—Low**
 - 10-year absolute coronary or cardiovascular risk less than 10%
 - **CAD Risk—Moderate**
 - 10-year absolute coronary or cardiovascular risk between 10% and 20%
 - **CAD Risk—High**
 - 10-year absolute coronary or cardiovascular risk of greater than 20%
- **NOTE:** High global risk by itself generally lacks scientific support as an indication for stress imaging. ⁽²⁹⁾⁽³⁰⁾ There are rare exemptions, such as patients requiring I-C antiarrhythmic drugs, who might require coronary risk stratification prior to initiation of the drug, when global risk is moderate or high.

Websites for Global Cardiovascular Risk Calculators* (28,30–33)

(29,31,32,33,34)

Risk Calculator	Websites for Online Calculator
Framingham Cardiovascular Risk	https://reference.medscape.com/calculator/framingham-cardiovascular-disease-risk
Reynolds Risk Score Can use if no diabetes Unique for use of family history	http://www.reynoldsriskscore.org/
Pooled Cohort Equation	http://clincalc.com/Cardiology/ASCVD/PooledCohort.aspx?example
ACC/AHA Risk Calculator	http://tools.acc.org/ASCVD-Risk-Estimator/

Risk Calculator	Websites for Online Calculator
MESA Risk Calculator With addition of Coronary Artery Calcium Score, for CAD-only risk	<u>https://www.mesa-nhlbi.org/MESACHDRisk/MesaRiskScore/RiskScore.aspx</u>

*Patients who have already manifested cardiovascular disease are already at high global risk and are not applicable to the calculators.

- Definitions of Coronary Artery Disease (1,3,12,35)(1,4,13,34)
 - Percentage stenosis refers to the reduction in diameter stenosis when angiography is the method and can be estimated or measured using angiography or more accurately measured with intravascular ultrasound (IVUS).
 - Coronary artery calcification is a marker of risk, as measured by Agatston score on coronary artery calcium imaging. It is not a diagnostic tool so much as it is a risk stratification tool. Its incorporation into global risk can be achieved by using the Multi-Ethnic Study of Atherosclerosis (MESA) risk calculator.
 - Ischemia-producing disease (also called hemodynamically or functionally significant disease, or obstructive coronary disease for which revascularization might be appropriate) implies at least one of the following:
 - Suggested by percentage diameter stenosis $\geq 70\%$ by angiography; intermediate lesions are 50 – 69% (11)(44)
 - For a left main artery, suggested by a percentage stenosis $\geq 50\%$ or minimum luminal cross-sectional area on IVUS ≤ 6 square mm (1,2,35)(2,12,34)
 - FFR (fractional flow reserve) ≤ 0.80 for a major vessel (2,35)(2,34)
 - iFR (instantaneous wave-free ratio) ≤ 0.89 for a major vessel (2,36,37,38)(2,35,36)
 - A major vessel would be a coronary vessel that would be amenable to revascularization, if indicated. This assessment is made based on the diameter of the vessel and/or the extent of myocardial territory served by the vessel.
 - FFR is the distal to proximal pressure ratio across a coronary lesion during maximal hyperemia induced by either intravenous or intracoronary adenosine. Less than or equal to 0.80 is considered a significant reduction in coronary flow.
 - Instantaneous wave-free ratio (iFR) measures the ratio of distal coronary to aortic pressure during the wave free period of diastole, with a value ≤ 0.89 considered hemodynamically significant. (36,37,38)(35,36)
- Anginal Equivalent (1,39,40)(12,37,38)
 - Development of an anginal equivalent (e.g., shortness of breath, fatigue, or weakness) either with or without prior coronary revascularization should be based upon the documentation of reasons that symptoms other than chest discomfort are

not due to other organ systems (e.g., dyspnea due to lung disease, fatigue due to anemia), by presentation of clinical data such as respiratory rate, oximetry, lung exam, etc. (as well as D-dimer, chest CT(A), and/or PFTs, when appropriate), and then incorporated into the evaluation of coronary artery disease as would chest discomfort. Syncope per se is not an anginal equivalent.

- Optimal Medical Therapy (OMT)
 - In general, a trial of OMT includes
 - Anti-platelet therapy
 - Lipid-lowering therapy
 - Beta blocker
 - Angiotensin converting enzyme (ACE) inhibitor

AUC Score

A reasonable diagnostic or therapeutic procedure **care**-can be defined as that for which the expected clinical benefits outweigh the associated risks, enhancing patient care and health outcomes in a cost-effective manner. (8)(5)

- Appropriate Care - Median Score 7-9
- May be Appropriate Care - Median Score 4-6
- Rarely Appropriate Care - Median Score 1-3

Acronyms/Abbreviations

CABG: Coronary artery bypass grafting **surgery**

CAC: Coronary artery calcium

CAD: Coronary artery disease

CCT: Cardiac computed tomography

CCTA: Coronary computed tomographic angiography

CMR: Cardiac magnetic resonance

CT(A): Computed tomography (angiography)

ECG: Electrocardiogram

EF: Ejection fraction

FFR: Fractional flow reserve

FFR-CT: Fractional flow reserve – computed tomography

GDMT: Guideline-directed medical therapy

HCM: Hypertrophic cardiomyopathy

iFR: Instantaneous wave-free ratio

IVUS: Intravascular ultrasound

LV: Left ventricular

LVEF: Left ventricular ejection fraction

LVOT: Left ventricular outflow tract

MESA: Multi-Ethnic Study of Atherosclerosis

MI: Myocardial infarction

MR: Mitral regurgitation

OMT: Optimal medical therapy

PCI: Percutaneous coronary intervention

PFT: Pulmonary function test

SRT: Septal reduction therapy

TAVR: Transcatheter aortic valve replacement

TID: Transient ischemic dilation

TTE: Transthoracic echocardiography

TEE: Transesophageal echocardiography

VT: Ventricular tachycardia

VF: Ventricular fibrillation

SUMMARY OF EVIDENCE

2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease⁽¹⁾

Study Design: This document is a guideline for the diagnosis and management of patients with stable ischemic heart disease. It was developed by the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, along with other medical organizations.

Target Population: Patients with stable ischemic heart disease.

Key Factors: The guideline covers various aspects, including the methodology and evidence overview, clinical evaluation, noninvasive testing, risk assessment, treatment, and patient follow-up. It emphasizes the importance of patient involvement in decision-making and provides detailed recommendations for diagnosis and management.

ACCF/SCAI/AATS/AHA/ASE/ASNC/HFSA/HRS/SCCM/SCCT/SCMR/STS 2012 Appropriate Use Criteria for Diagnostic Catheterization⁽¹¹⁾

Study Design: This document provides appropriate use criteria for diagnostic catheterization. It was developed by the American College of Cardiology Foundation Appropriate Use Criteria Task Force and other medical organizations.

Target Population: Patients undergoing diagnostic catheterization for various cardiovascular conditions.

Key Factors: The document includes 166 clinical scenarios rated for the appropriateness of diagnostic catheterization. It focuses on the performance of coronary angiography and hemodynamic measurements for evaluating coronary artery disease, valvular heart disease, pulmonary hypertension, and cardiomyopathies. The criteria aim to guide physician decision-making, healthcare delivery, and reimbursement policy.

ACC/AHA/ASE/ASNC/ASPC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2023 Multimodality Appropriate Use Criteria for the Detection and Risk Assessment of Chronic Coronary Disease ⁽³⁾

Study Design: This document is an update of the multimodality appropriate use criteria for the detection and risk assessment of chronic coronary disease. It was developed by the American College of Cardiology Solution Set Oversight Committee and other medical organizations.

Target Population: Patients with chronic coronary disease, including those with symptoms of ischemia, prior myocardial infarction, or revascularization, and those undergoing assessment for exercise programs or cardiac rehabilitation.

Key Factors: The document provides ratings for various diagnostic modalities, including exercise ECG, stress nuclear MPI, stress echocardiography, stress CMR, coronary artery calcium scoring, coronary computed tomography angiography, and invasive coronary angiography. It emphasizes the importance of appropriate test selection based on clinical scenarios and patient characteristics.

ANALYSIS OF EVIDENCE

Shared Findings ^(1,3,11)

All three articles emphasize the importance of heart catheterization in diagnosing and managing cardiovascular diseases. They agree on the necessity of using heart catheterization for accurate diagnosis and risk assessment, especially in patients with suspected or known coronary artery disease (CAD).

- **Diagnostic Accuracy:** All articles highlight the high diagnostic accuracy of heart catheterization in detecting obstructive CAD. They emphasize that heart catheterization provides detailed information about coronary anatomy and helps in identifying the severity of stenosis.
- **Risk Assessment:** The articles agree on the role of heart catheterization in risk assessment. They mention that heart catheterization helps in evaluating the risk of future cardiovascular events and guides treatment decisions.
- **Guidelines and Recommendations:** All three articles are developed by reputable medical organizations and provide guidelines and recommendations for the appropriate use of heart catheterization. They emphasize evidence-based practices and aim to improve patient outcomes.

Conclusion^(1,3,11)

The evidence presented in these articles reiterates the importance of heart catheterization in diagnosing and managing cardiovascular diseases. They highlight the high diagnostic accuracy and risk assessment capabilities of heart catheterization, which are crucial for guiding treatment decisions and improving patient outcomes.

In summary, while the articles share common conclusions about the importance of heart catheterization, they differ in their specific focuses and recommendations based on their contexts. Together, they provide a comprehensive understanding of the role of heart catheterization in diagnosing and managing cardiovascular diseases.

POLICY HISTORY

Summary

Date	Summary
<u>July 2025</u>	<ul style="list-style-type: none"> Reviewed to reconcile dates, no substantive changes made
<u>June 2025</u>	<ul style="list-style-type: none"> Added a Summary of Evidence and Analysis of Evidence
<u>April 2025</u>	<ul style="list-style-type: none"> This guideline merges and replaces two Evolent guidelines with identical clinical criteria: ECG 7295-01 for Heart Catheterization and ECG 065 for Heart Catheterization into Evolent Clinical Guideline 7295 for Heart Catheterization <ul style="list-style-type: none"> This guideline also merges Procedure Codes from these two Evolent guidelines Added in general information statement regarding guideline criteria development by reputable sources, standard of care, and best practices Aligned clinical reasoning section for consistency Updated stress imaging in Stable Ischemic Heart Disease and corresponding Definitions in the Background section per recent societal appropriate use criteria reference Updated references
<u>February 2024</u>	<ul style="list-style-type: none"> Formatting change Addition of clinical reasoning statement with AUC scoring described AUC scores added to bullet points Indications for Ascending Aortography added

Date	Summary
	<ul style="list-style-type: none"> • References updated
April 2023	<ul style="list-style-type: none"> • Added definition of unstable angina to include ischemic EKG changes • Added definition in background section on OMT (optimal medical therapy) • Added indication for revascularization of non-culprit lesion post STEMI • Added statement on clinical indications not addressed in this guideline

LEGAL AND COMPLIANCE

Guideline Approval

Committee

Reviewed / Approved by **Evolent Specialty Services** Clinical Guideline Review Committee

Disclaimer

Evolent Clinical Guidelines do not constitute medical advice. Treating health care professionals are solely responsible for diagnosis, treatment, and medical advice. Evolent uses Clinical Guidelines in accordance with its contractual obligations to provide utilization management. Coverage for services varies for individual members according to the terms of their health care coverage or government program. Individual members' health care coverage may not utilize some Evolent Clinical Guidelines. Evolent clinical guidelines contain guidance that requires prior authorization and service limitations. A list of procedure codes, services or drugs may not be all inclusive and does not imply that a service or drug is a covered or non-covered service or drug. Evolent reserves the right to review and update this Clinical Guideline in its sole discretion. Notice of any changes shall be provided as required by applicable provider agreements and laws or regulations. Members should contact their Plan customer service representative for specific coverage information.

Evolent Clinical Guidelines are comprehensive and inclusive of various procedural applications for each service type. Our guidelines may be used to supplement Medicare criteria when such criteria is not fully established. When Medicare criteria is determined to not be fully established, we only reference the relevant portion of the corresponding Evolent Clinical Guideline that is applicable to the specific service or item requested in order to determine medical necessity.

REFERENCES

1. Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease. *Circulation*. 2012;126(25):e354-471. doi:10.1161/CIR.0b013e318277d6a0
2. Lotfi A, Davies JE, Fearon WF, Grines CL, Kern MJ, Klein LW. Focused update of expert consensus statement: Use of invasive assessments of coronary physiology and structure: A position statement of the society of cardiac angiography and interventions. *Catheterization and Cardiovascular Interventions*. 2018;92(2):336-347. doi:10.1002/ccd.27672
3. Winchester DE, Maron DJ, Blankstein R, et al. ACC/AHA/ASE/ASNC/ASPC/HFSA/HRS/SCAI/SCC/SCMR/STS 2023 Multimodality Appropriate Use Criteria for the Detection and Risk Assessment of Chronic Coronary Disease. *J Am Coll Cardiol*. 2023;81(25):2445-2467. doi:10.1016/j.jacc.2023.03.410
4. Montalescot G, Sechtem U, Achenbach S, et al. 2013 ESC guidelines on the management of stable coronary artery disease. *Eur Heart J*. 2013;34(38):2949-3003. doi:10.1093/eurheartj/eht296
5. Bonow RO, Douglas PS, Buxton AE, et al. ACCF/AHA Methodology for the Development of Quality Measures for Cardiovascular Technology. *J Am Coll Cardiol*. 2011;58(14):1517-1538. doi:10.1016/j.jacc.2011.07.007
6. Fitch Kathryn, Bernstein SJ, Aguilar MD, et al. *The RAND/UCLA Appropriateness Method User's Manual*. RAND.; 2001. Accessed October 8, 2024. https://www.rand.org/pubs/monograph_reports/MR1269.html
7. Hendel RC, Patel MR, Allen JM, et al. Appropriate Use of Cardiovascular Technology: 2013 ACCF appropriate use criteria methodology update. *J Am Coll Cardiol*. 2013;61(12):1305-1317. doi:10.1016/j.jacc.2013.01.025
8. Hendel RC, Lindsay BD, Allen JM, et al. ACC Appropriate Use Criteria Methodology: 2018 Update. *J Am Coll Cardiol*. 2018;71(8):935-948. doi:10.1016/j.jacc.2018.01.007
9. Patel MR, Spertus JA, Brindis RG, et al. ACCF Proposed Method for Evaluating the Appropriateness of Cardiovascular Imaging. *J Am Coll Cardiol*. 2005;46(8):1606-1613. doi:10.1016/j.jacc.2005.08.030
10. Fihn SD, Blankenship JC, Alexander KP, et al. 2014 ACC/AHA/AATS/PCNA/SCAI/STS Focused Update of the Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease. *J Am Coll Cardiol*. 2014;64(18):1929-1949. doi:10.1016/j.jacc.2014.07.017
11. Patel MR, Bailey SR, Bonow RO, et al. ACCF/SCAI/AATS/AHA/ASE/ASNC/HFSA/HRS/SCCM/SCCT/SCMR/STS 2012 Appropriate Use Criteria for Diagnostic Catheterization. *J Am Coll Cardiol*. 2012;59(22):1995-2027. doi:10.1016/j.jacc.2012.03.003
12. Virani SS, Newby LK, Arnold S V., et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease. *J Am Coll Cardiol*. 2023;82(9):833-955. doi:10.1016/j.jacc.2023.04.003

13. Patel MR, Calhoun JH, Dehmer GJ, et al. ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 Appropriate Use Criteria for Coronary Revascularization in Patients With Stable Ischemic Heart Disease. *J Am Coll Cardiol.* 2017;69(17):2212-2241. doi:10.1016/j.jacc.2017.02.001
14. Mehta CR, Naeem A, Patel Y. Cardiac Computed Tomography Angiography in CAD Risk Stratification and Revascularization Planning. *Diagnostics.* 2023;13(18). doi:10.3390/diagnostics13182902
15. Gulati M, Levy PD, Mukherjee D, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. *Circulation.* 2021;144(22):e368-e454. doi:10.1161/CIR.0000000000001029
16. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. *J Am Coll Cardiol.* 2022;79(17):e263-e421. doi:10.1016/j.jacc.2021.12.012
17. Lasica R, Djukanovic L, Savic L, et al. Update on Myocarditis: From Etiology and Clinical Picture to Modern Diagnostics and Methods of Treatment. *Diagnostics.* 2023;13(19):3073. doi:10.3390/diagnostics13193073
18. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. *Circulation.* 2018;138(13). doi:10.1161/CIR.0000000000000549
19. Doherty JU, Kort S, Mehran R, Schoenhagen P, Soman P. ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2017 Appropriate Use Criteria for Multimodality Imaging in Valvular Heart Disease. *J Am Coll Cardiol.* 2017;70(13):1647-1672. doi:10.1016/j.jacc.2017.07.732
20. Ramee S, Anwaruddin S, Kumar G, et al. The Rationale for Performance of Coronary Angiography and Stenting Before Transcatheter Aortic Valve Replacement. *JACC Cardiovasc Interv.* 2016;9(23):2371-2375. doi:10.1016/j.jcin.2016.09.024
21. Svensson LG, Adams DH, Bonow RO, et al. Aortic Valve and Ascending Aorta Guidelines for Management and Quality Measures. *Ann Thorac Surg.* 2013;95(6):S1-S66. doi:10.1016/j.athoracsur.2013.01.083
22. Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease. *J Am Coll Cardiol.* 2021;77(4):e25-e197. doi:10.1016/j.jacc.2020.11.018
23. Ommen SR, Ho CY, Asif IM, et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy. *J Am Coll Cardiol.* 2024;83(23):2324-2405. doi:10.1016/j.jacc.2024.02.014
24. Velleca A, Shullo MA, Dhital K, et al. The International Society for Heart and Lung Transplantation (ISHLT) guidelines for the care of heart transplant recipients. *The Journal of Heart and Lung Transplantation.* 2023;42(5):e1-e141. doi:10.1016/j.healun.2022.10.015
25. Stout KK, Daniels CJ, Aboulhosn JA, et al. 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease. *J Am Coll Cardiol.* 2019;73(12):e81-e192. doi:10.1016/j.jacc.2018.08.1029

26. Diamond GA, Forrester JS. Analysis of Probability as an Aid in the Clinical Diagnosis of Coronary-Artery Disease. *New England Journal of Medicine*. 1979;300(24):1350-1358. doi:10.1056/NEJM197906143002402
27. Teddy Weiss A, Berman DS, Lew AS, et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: A marker of severe and extensive coronary artery disease. *J Am Coll Cardiol*. 1987;9(4):752-759. doi:10.1016/S0735-1097(87)80228-0
28. Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk. *J Am Coll Cardiol*. 2014;63:2935-2959. doi:10.1016/j.jacc.2013.11.005
29. Douglas PS, De Bruyne B, Pontone G, et al. 1-Year Outcomes of FFRCT-Guided Care in Patients With Suspected Coronary Disease. *J Am Coll Cardiol*. 2016;68(5):435-445. doi:10.1016/j.jacc.2016.05.057
30. Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. *JAMA*. 2007;297(6):611-619. doi:10.1001/jama.297.6.611
31. McClelland RL, Jorgensen NW, Budoff M, et al. 10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors. *J Am Coll Cardiol*. 2015;66(15):1643-1653. doi:10.1016/j.jacc.2015.08.035
32. D'Agostino RB, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: The Framingham heart study. *Circulation*. 2008;117(6):743-753. doi:10.1161/CIRCULATIONAHA.107.699579
33. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease. Published online September 10, 2019.
34. Shlofmitz E, Ali ZA, Maehara A, Mintz GS, Shlofmitz R, Jeremias A. Intravascular Imaging-Guided Percutaneous Coronary Intervention: A Universal Approach for Optimization of Stent Implantation. *Circ Cardiovasc Interv*. 2020;13(12):E008686. doi:10.1161/CIRCINTERVENTIONS.120.008686
35. Götberg M, Christiansen EH, Gudmundsdottir IJ, et al. Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI. *New England Journal of Medicine*. 2017;376(19):1813-1823. doi:10.1056/nejmoa1616540
36. Verdoia M, Rognoni A. Coronary Physiology: Modern Concepts for the Guidance of Percutaneous Coronary Interventions and Medical Therapy. *J Clin Med*. 2023;12(6). doi:10.3390/jcm12062274
37. Shen WK, Sheldon RS, Benditt DG, et al. 2017 ACC/AHA/HRS Guideline for the Evaluation and Management of Patients With Syncope. *J Am Coll Cardiol*. 2017;70(5):e39-e110. doi:10.1016/j.jacc.2017.03.003
38. Brignole M, Moya A, de Lange FJ, et al. 2018 ESC Guidelines for the diagnosis and management of syncope. *Eur Heart J*. 2018;39(21):1883-1948. doi:10.1093/eurheartj/ehy037