

## AmeriHealth Caritas Louisiana

|                                           |                                                     |
|-------------------------------------------|-----------------------------------------------------|
| <b>National Imaging Associates, Inc.*</b> |                                                     |
| <b>Clinical guidelines</b>                | <b>Original Date: July 2008</b>                     |
| <b>PELVIS CT Angiography</b>              |                                                     |
| <b>CPT Codes: 72191</b>                   | <b>Last Revised Date: May 2020</b>                  |
| <b>Guideline Number: NIA(CG)_038</b>      | <b>Implementation Date: <u>January 2021 TBD</u></b> |

### GENERAL INFORMATION:

It is an expectation that all patients receive care/services from a licensed clinician. All appropriate supporting documentation, including recent pertinent office visit notes, laboratory data, and results of any special testing must be provided. All prior relevant imaging results, and the reason that alternative imaging (gold standard, protocol, contrast, etc.) cannot be performed must be included in the documentation submitted.

### IMPORTANT NOTE:

**Abd/Pelvis CTA & Lower Extremity CTA Runoff Requests:** Only one authorization request is required, using CPT Code 75635 Abdominal Arteries CTA. This study provides for imaging of the abdomen, pelvis and both legs. The CPT code description is CTA aorto-iliofemoral runoff; abdominal aorta and bilateral ilio-femoral lower extremity runoff.

### INDICATIONS FOR PELVIS CT Angiography / CT Venography – Abdominal CTA can be added when indicated:

#### For evaluation of known or suspected vascular disease (Eren, 2010)

- For pelvic extent of known large vessel diseases (abdominal aorta, inferior vena cava, superior/inferior mesenteric, celiac, splenic, renal or iliac arteries/veins), e.g., aneurysm, dissection, arteriovenous malformations (AVMs), and fistulas, intramural hematoma, and vasculitis.
- Evidence of vascular abnormality seen on prior imaging studies.
- For suspected pelvic extent of aortic dissection.
- Evaluation of known or suspected aneurysms limited to the pelvis or in evaluating pelvic extent of aortic aneurysm (Khosa, 2011; Uberoi, 2011; Wanhaninen, 2019)\*
  - Known or suspected iliac artery aneurysm **AND** equivocal or indeterminate Doppler ultrasound results
  - **OR**
  - If repeat Doppler ultrasound is indeterminate

\* National Imaging Associates, Inc. (NIA) is a subsidiary of Magellan Healthcare, Inc.

- OR
- Suspected complications of known aneurysm as evidenced by clinical findings such as new onset of pelvic pain.
- Follow up of iliac artery aneurysm:
  - Every three years for diameter 2.0 – 2.9 cm and
  - aAnnually for 3.0-3.4 cm , if Doppler ultrasound is inconclusive. Six month if between 3.0-3.5 cm and if stable follow yearly.
  - If > 3.5 cm, < six month follow up (and consider intervention). ([Wainhainen, 2019](#))
- **Suspected retroperitoneal hematoma or hemorrhage (to determine a vascular source of hemorrhage in the setting of trauma, tumor invasion, fistula or vasculitis; otherwise CT (rather than CTA) is sufficient and the modality of choice for diagnosing hemorrhage when an underlying neoplasm is suspected and prior imaging is inconclusive (Abe, 2010).**
- 
- For evaluation of suspected pelvic vascular disease or pelvic congestive syndrome when findings on ultrasound are indeterminate (MR or CT venography may be used as the initial study for pelvic thrombosis or thrombophlebitis) ([Knuutinen, 2015, Bookwalter, 2019; Knuutinen, 2015 ACR, 2013; Eren, 2010](#)).
- For evaluation of venous thrombosis in the inferior vena cava (Aw-Zoretic, 2016).
- Venous thrombosis if previous studies have not resulted in a clear diagnosis (ACR, 2013).
- Vascular invasion or displacement by tumor (Conventional CT or MRI also appropriate) (Certik, 2015; Smillie, 2015).
- For known and/or suspected mesenteric ischemia/-ischemic colitis (can include abdomen CTA) (ACR, 2018).

### Other vascular indications

- For suspected May-Thurner Syndrome (iliac vein compression syndrome) (can include abdomen CTA) (Al-Nouri, 2011; Kalu, 2013)
- For known and/or suspected mesenteric ischemia/ ischemic colitis (can include abdomen CTA) (ACR, 2018)
- Lower gastrointestinal hemorrhage: Active bleeding in a hemodynamically stable patient or non-localized intermittent bleeding as an alternative to Tc-99m RBC scan when colonoscopy did not localize the bleeding, is contraindicated or unavailable (ACR, 2014; Clerc, 2017).
- For evaluation of erectile dysfunction when a vascular cause is suspected and Doppler ultrasound is inconclusive (Shindel, 2018)
- For patients with fibromuscular dysplasia (FMD), a one-time vascular study of the abdomen and pelvis (Kadian-Dodov, 2016)
- For patients with vascular Ehlers-Danlos syndrome or Marfan syndrome recommend a one-time vascular study of the abdomen and pelvis.
- For Loeys-Dietz vascular imaging every two years (include abdomen CTA) (Chu, 2014)
- For spontaneous coronary artery dissection (SCAT) at time of coronary arteriography (includes CTA abdomen) (Croustillat, 2020)

### **Pre- operative evaluation**

(ACR, 2017)

- Evaluation of interventional vascular procedures prior to endovascular aneurysm repair (EVAR), or for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.
- [Imaging of the deep inferior epigastric arteries for surgical planning \(breast reconstruction surgery\) include abdomen CTA/MRA \(ACR, 2017\)](#)
- [Prior to uterine artery embolization for fibroids \(MRA preferred\) \(Maciel, 2017\)](#)

#### **Post-operative or post-procedural evaluation**

- Evaluation of post-operative complications of renal transplant allograft (Bultman, 2014).
- Evaluation of endovascular/interventional vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.
- Evaluation of post-operative complications e.g., pseudoaneurysms, related to surgical bypass grafts, vascular stents and stent-grafts in the pelvis.
- Follow-up for post-endovascular repair (EVAR) or open repair of abdominal aortic aneurysm (AAA) and iliac artery aneurysms ([ACR, 2017](#); Chaikof, 2018; [ACR, 2017](#); Uberoi, 2011).
  - Routine, baseline study (post-op/intervention) is warranted within 1-3 months.
  - Asymptomatic at six (6) month intervals, for one (1) year, then annually.
  - Symptomatic/complications related to stent graft – more frequent imaging may be needed.
  - Follow-up study may be needed to help evaluate a patient's progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

#### **Chest CTA and Abdomen CTA or Abdomen/Pelvis CTA combo**

- For preoperative or preprocedural evaluation such as TAVR (transcatheter aortic valve replacement) or transcatheter venous ablation (ACR, 2017; Ohana, 2015).
- Acute aortic dissection (Barman, 2014).
- [Takayasu's arteritis \(Keser, 2014\)](#).
- [Marfan's syndrome](#)
- [Loeys-Dietz syndrome](#)
- [Spontaneous coronary artery dissection \(SCAD\)](#)
- [Vascular Ehlers-Danlos syndrome](#)
- Post-operative complications (Bennet, 2017; Choudhury, 2017)

---

#### **BACKGROUND:**

Computed tomographic angiography (CTA) is used in the evaluation of many conditions affecting the veins and arteries of the pelvis or lower extremities. It is not appropriate as a screening tool for asymptomatic patients without a previous diagnosis.

## OVERVIEW:

**CT/MRI and acute hemorrhage:** MRI is not indicated and MRA/MRV (MR Angiography/Venography) is rarely indicated for evaluation of intraperitoneal or retroperitoneal hemorrhage, particularly in the acute setting. CT is the study of choice due to its availability, speed of the study and less susceptibility to artifact from patient motion. Advances in technology have allowed conventional CT to not just detect hematomas but also the source of acute vascular extravasation. In special cases finer vascular detail to assess the specific source vessel responsible for hemorrhage may require the use of CTA. CTA in diagnosis of lower gastrointestinal bleeding is such an example (Clerc, 2017).

### **\*Follow-up of asymptomatic, incidentally-detected iliac artery aneurysms:** (Uberoi, 2011)

The definition of an iliac artery aneurysm (IAA) is dilation to more than 1.5 times its normal diameter; in general a common iliac artery  $\geq 18$  mm in men and  $\geq 15$  mm in women; an internal iliac artery (IIA)  $> 8$  mm is considered aneurysmal. There are four types of isolated iliac aneurysms classified by Reber. Suggested surveillance is extrapolated from AAA surveillance and can be done by Doppler ultrasound or CTA if hard to visualize by ultrasound (Wainhanen, 2019)

- ~~<3.0 cm: rarely rupture, grow slowly, follow-up not generally needed~~
- ~~3.0-3.5 cm: followed up initially at 6 months~~
  - ~~if stable, then annual imaging~~
- ~~>3.5 cm: greater likelihood of rupture~~
  - ~~6 month follow up~~
  - ~~consider intervention~~

## POLICY HISTORY:

**Review Date:** June 2019

### **Review Summary:**

- Added important note for runoff requests and authorizations
- Added note that abdominal CTA can be added when indicated
- Removed iliac artery aneurysm size restriction of  $>2.5$  cm in diameter and changed to 'if repeat Doppler US is indeterminate'
- For retroperitoneal hematoma or hemorrhage, specified 'when an underlying neoplasm is suspected and prior imaging is inconclusive'
- Added pelvic congestive syndrome; suspected May-Thurner Syndrome; erectile dysfunction when vascular cause is suspected and Doppler US inconclusive; post-operative complications of renal transplant allograft
- Modified combo study from 'Chest CTA/Pelvis CTA' to 'Chest CTA and Abdomen CTA or Abdomen/Pelvis CTA combo'
- Updated background information and references

**Review Date:** May 2020

### **Review Summary:**

- Added evaluation of FMD, Vascular Ehlers-Danlos syndrome, Loetz-Dietz and SCAD
- Added uterine artery embolization
- Added combo studies

## REFERENCES:

Abe T, Kai M, Miyoshi O, et al. Idiopathic retroperitoneal hematoma. *Case Rep Gastroenterol.* September-December 2010; 4(3):318-322.  
<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2974992/>. Retrieved February 12, 2018.

Al-Nouri O, Milner R. May-Thurner Syndrome. *Clin Rev.* 2011; 8(3).  
<https://www.vasculardiseasemanagement.com/content/may-thurner-syndrome>. Accessed May 9, 2019.

American College of Radiology (ACR). ACR Appropriateness Criteria®.  
<https://acsearch.acr.org/list>. Published 2018.

Aw-Zoretic J, Collins JD. Considerations for imaging the inferior vena cava (IVC) with/without IVC Filters. *Semin Intervent Radiol.* 2016; 33(2):109-21.

Barman M. Acute aortic dissection. *Euro Society Cardiol.* 2014; 12(25).

Bennet KM, Kent KC, Schumacher J, et al. Targeting the most important complications in vascular surgery. *J Vasc Surg.* 2017; 65(3):793-803.

[Bookwalter, CA, Van Buren, WM, et al. Imaging Appearance and Nonsurgical Management of Pelvic Venous Congestion Syndrome. Radiographics. 2019; 39\(2\).](#)

Bultman EM, Klaers J, Johnson KM, et al. Non-contrast enhanced 3D SSFP MRA of the renal allograft vasculature: A comparison between radial linear combination and cartesian inflow-weighted acquisitions. *Magn Reson Imaging.* 2014; 32(2):190–195.

Certik B, Treska V, Molacek J, et al. Cardiovascular Surgery. How to proceed in the case of a tumor thrombus in the inferior vena cava with renal cell carcinoma. *Cor et Vasa.* April 2015; 57(2):e95-e100. <https://www.sciencedirect.com/science/article/pii/S0010865015000260>. Retrieved February 12, 2018.

Chaikof EL, Dalman RL, Eskandari MK, et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. *J Vasc Surg.* January 2018; 67(1):2-77.e2. [http://www.jvascsurg.org/article/S0741-5214\(17\)32369-8/fulltext#sec1.3](http://www.jvascsurg.org/article/S0741-5214(17)32369-8/fulltext#sec1.3). Retrieved February 15, 2018.

Choudhury, M. Postoperative Management of Vascular Surgery Patients: A Brief Review. *Clin Surg.* 2017; 2:1584.

[Chu, LC, Johnson, PT, Dietz HC, et al. CT Angiographic Evaluation of Genetic Vascular Disease: Role in Detection, Staging, and Management of Complex Vascular Pathologic Conditions. AJR Am J Roentgenol. 2014 May; 202\(5\):1120-9.](#)

Clerc D, Grass F, Schafer M, et al. Lower gastrointestinal bleeding—Computed tomographic angiography, colonoscopy or both? *World J Emerg Surg*. 2017; 12:1. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215140/>. Retrieved February 12, 2018.

**Crousilat, DR, Wood, MJ, et al. Spontaneous Coronary Artery Dissection: An Update for the Interventionalist. Cath Lab Digest. March; 2020;28(3).**

Eren S. Multi-detector row computed tomography findings of pelvic congestion syndrome caused by dilated ovarian veins. *Eurasian J Med*. 2010 Dec; 42(3):128-31.

Henes FO, Pickhardt PJ, Herzyk A, et al. CT angiography in the setting of suspected acute mesenteric ischemia: prevalence of ischemic and alternative diagnoses. *Abdom Radiol (NY)*. 2017 Apr; 42(4):1152-1161. doi: 10.1007/s00261-016-0988-0.

**Kadian-Dodov, D, Gornik, HL, et al. Dissection and Aneurysm in Patients with Fibromuscular Dysplasia: Findings from the US Registry for FMD. Journal of the Am Coll of Cardiology. 2016; 68(2).**

Kalu S, Shah P, Natarajan A, et al. May-thurner syndrome: A case report and review of the literature. *Case Rep Vasc Med*. 2013; 2013:740182. Epub 2013 Feb 20.

Keser G, Direskeneli H, Aksu K, et al. Management of Takayasu Arteritis: A systematic review. *Rheumatology*. 2014; 53(5):793-801.

Khalil H, Avruch L, Olivier A, et al. The natural history of pelvic vein thrombosis on magnetic resonance venography after vaginal delivery. *Am J Obstet Gynecol*. 2012; 206(4):356.

Khosa F, Krinsky G, Macari M, et al. Managing incidental findings on abdominal and pelvic CT and MRI, Part 2: White paper of the ACR Incidental Findings Committee II on vascular findings. *J Am Coll Radiol*. 2013; 10(10):789-794. doi:10.1016/j.jacr.2013.05.021.

**Knuttinen, M-G, Xie, K, et al. Pelvic Venous Insufficiency: Imaging, Diagnosis, Treatment Approaches and Therapeutic Issues. AJR. 2015; 204(2).**

Liu PS, Platt JF. CT angiography of the renal circulation. *Radiol Clin North Am*. 2010; 48(2):347-365. doi: 10.1016/j.rcl.2010.02.005.

**Maciel, C, Tang, YZ, et al. Preprocedural MRI and MRA in planning fibroid embolization. Diagn Interv Radiol. 2017; 23(2):163-171.**

Ohana M, Bakouboula B, Labani A, et al. Imaging before and after catheter ablation of atrial fibrillation. *Diagn Interv Imaging*. 2015 Nov; 96(11):1113-23.

Seitz M, Waggershauser T, Khoder W. Congenital intrarenal arteriovenous malformation presenting with gross hematuria after endoscopic intervention: A case report. *J Med Case Rep.* 2008; 2:326. doi: 10.1186/1752-1947-2-326.

Shindel AW, Brandt WO, Bochinski D, et al. Medical and Surgical Therapy of Erectile Dysfunction. *In: Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.* 2018 Jul 10. <https://www.ncbi.nlm.nih.gov/books>. July 10, 2018.

Smillie R, Shetty M, Boyer AC, et al. Imaging Evaluation of the inferior vena cava. *RadioGraphics.* 2015; 35(2). <https://pubs.rsna.org/doi/full/10.1148/rg.352140136>.

**Sommer WH, Becker CR, Haack M, et al. Time-resolved CT Angiography for the Detection and Classification of Endoleaks. *Radiol.* 2012; 263(3):917-26.**  
<https://pubs.rsna.org/doi/full/10.1148/radiol.12111217>.

Thakur V, Inampudi P, Pena CS. Imaging of mesenteric ischemia. *Applied Radiology.* 2018; 47(2):13-18.

Uberoi R, Tsetis D, Shrivastava V, et al. Standard of practice for the interventional management of isolated iliac artery aneurysms. *Cardiovasc Intervent Radiol.* 2011; 34(1):3-13. doi:10.1007/s00270-010-0055-0.

Wanhainen A, Verzini F, Van Herzele I, et al. Editor's Choice - European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. *Eur J Vasc Endovasc Surg.* 2019; 57(1):8-93.

**Weiland HS, et al Time-resolved CT Angiography for the Detection and Classification of Endoleaks.. 2012; 263(3). <https://pubs.rsna.org/doi/full/10.1148/radiol.12111217>.**

Reviewed / Approved by *M. Atif Khalid MD* M. Atif Khalid, M.D., Medical Director, Radiology  
Reviewed / Approved by *M. Atif Khalid MD* M. Atif Khalid, M.D., Medical Director, Radiology  
Reviewed / Approved by *M. Atif Khalid MD* M. Atif Khalid, M.D., Medical Director, Radiology

**Disclaimer:** Magellan Healthcare service authorization policies do not constitute medical advice and are not intended to govern or otherwise influence the practice of medicine. These policies are not meant to supplant your normal procedures, evaluation, diagnosis, treatment and/or care plans for your patients. Your professional judgement must be exercised and followed in all respects with regard to the treatment and care of your patients. These policies apply to all Magellan Healthcare subsidiaries including, but not limited to, National Imaging Associates ("Magellan"). The policies constitute only the reimbursement and coverage guidelines of Magellan. Coverage for services varies for individual members in accordance with the terms and conditions of applicable Certificates of Coverage, Summary Plan Descriptions, or contracts with governing regulatory agencies. Magellan reserves the right to review and update the guidelines at its sole discretion. Notice of such changes, if necessary, shall be provided in accordance with the terms and conditions of provider agreements and any applicable laws or regulations.