

AmeriHealth Caritas Louisiana

National Imaging Associates, Inc.*	
Clinical guidelines CHEST MRA	Original Date: September 1997
CPT Codes: 71555	Last Revised Date: May 2020
Guideline Number: NIA_CG_022-2	Implementation Date: <u>January 2021 TBD</u>

GENERAL INFORMATION:

It is an expectation that all patients receive care/services from a licensed clinician. All appropriate supporting documentation, including recent pertinent office visit notes, laboratory data, and results of any special testing must be provided. All prior relevant imaging results, and the reason that alternative imaging (gold standard, protocol, contrast, etc.) cannot be performed must be included in the documentation submitted.

INDICATIONS FOR CHEST MRA:

Magnetic resonance angiography (MRA) or computed tomography angiography (CTA) may be used for several indications but not both.

Vascular Disease

- Superior vena cava (SVC) syndrome (Friedman, 2017)
- Subclavian Steal Syndrome after positive or inconclusive ultrasound (Osiro, 2012; Potter, 2014)
- Thoracic Outlet Syndrome (ACR, 2014; [Chavhan, 2017](#); Povlsen, 2018; [Chavhan, 2017](#))
- Takayasu's arteritis (Keser, 2014)
- Clinical concern for acute aortic dissection (ACR, 2017; Barman, 2014)
 - Sudden painful ripping sensation in the chest or back and may include
 - New diastolic murmur
 - Cardiac tamponade
 - Distant heart sounds
 - Hypotension or shock
- For MRPA (MR Pulmonary Angiography) in patients with intermediate pretest probability with a positive D-dimer or high pretest probability (but only at centers that routinely perform it well and only for patients for whom standard tests are contraindicated)

Thoracic Aortic Disease

* **National Imaging Associates, Inc. (NIA) is a subsidiary of Magellan Healthcare, Inc.**

If TTE was not performed, was technically inadequate, or if imaging is required beyond the proximal ascending aorta

Initial/Screening:

- Screening of first-degree relatives of individuals with a thoracic aortic aneurysm (defined as $\geq 50\%$ above normal) or dissection, or if an associated high-risk mutation is present
 - If one or more first degree relatives of a patient with a known thoracic aortic aneurysm or dissection, have thoracic aortic dilatation, aneurysm or dissection, then imaging of 2nd degree relatives is reasonable
- Evaluation of the ascending aorta in suspected connective tissue disease or genetic conditions that predispose to aortic aneurysm or dissection (e.g., Marfan syndrome, Ehlers Danlos or Loeys-Dietz syndromes) at time of diagnosis
- Patients with Turner's syndrome should undergo imaging to assess for bicuspid aortic valve, coarctation of the aorta or dilation of the ascending or thoracic aorta. If the initial imaging is normal and there are no additional risk factors for dissection, imaging can be done every 5-10 years.
- Screening of first-degree relatives of patients with a bicuspid aortic valve

Follow-up known aneurysm/vascular pathology:

- Six months follow up after initial finding of a dilated thoracic aorta, for assessment of rate of change
- Annual follow up of enlarged thoracic aorta that is above top normal for age, gender, and body surface area
- Biannual (twice/year) follow up of enlarged aortic root ≥ 4.5 cm or showing growth rate ≥ 0.5 cm/year
- Evaluation of the ascending aorta in known or suspected connective tissue disease or genetic conditions that predispose to aortic aneurysm or dissection (e.g., Marfan syndrome, Ehlers Danlos or Loeys-Dietz syndromes) at time of diagnosis and 6 months after initial imaging for thereafter for growth rate assessment, followed by annual imaging, or biannual (twice yearly) if diameter ≥ 4.5 or expanding ≥ 0.5 cm/yr
- Patients with Turner's syndrome - If an abnormality exists on initial imaging, annual imaging is recommended should undergo imaging to assess for bicuspid aortic valve, coarctation of the aorta or dilation of the ascending or thoracic aorta. If the initial imaging is normal and there are no additional risk factors for dissection, imaging can be done every 5-10 years. If an abnormality exists, annual imaging is recommended
- Screening of first degree relatives of patients with a bicuspid aortic valve
- Re-evaluation of known ascending aortic dilation or history of aortic dissection with a change in clinical status or cardiac exam or when findings may alter management
- Re-evaluation (<1 y, generally twice a year) of the size and morphology of the aortic sinuses and ascending aorta in patients with a bicuspid AV with 1 of the following:
 - Aortic diameter ≥ 4.5 cm
 - Rapid rate of change in aortic diameter when an annual growth rate of ≥ 0.5 cm is suspected.

- Family history (first-degree relative) of aortic dissection
- Follow up post medical treatment of aortic disease:
 - Acute dissection: 1 month, 6 months, then annually
 - Chronic dissection: annually
- Follow up post either root repair or AVR plus ascending aortic root/arch repair: baseline post-op, then annually

Congenital Malformations

- Thoracic malformation on other imaging (chest x-ray, echocardiogram, gastrointestinal study, or inconclusive CT) (Ferreira, 2015; Hellinger, 2011; Karaosmanoglu, 2015; Poletto, 2017)
- Congenital heart disease with pulmonary hypertension (Pascall, 2018)
- Pulmonary Sequestration ([AI-Timmy, 2016](#); Long, 2016; [AI-Timmy, 2016](#))

Pulmonary Hypertension based on other testing (Ascha, 2017; Rose-Jones, 2015):

- Echocardiogram
- Right heart catheterization

Atrial fibrillation with ablation planned (Kolandaivelu, 2012)

Pre-operative Evaluation

Post-operative ~~or post~~ procedural evaluation

- Post op complications (Bennet, 2017; Choudhury, 2017)
- Routine post-operative ([SVS, 2018](#); Uthof, 2012; ~~SVS, 2018~~)
 - Thoracic endovascular aneurysm repair
 - 1 month
 - 6 month if initial abnormal, or if for aortic dissection
 - Annual for 5 years
 - Open Surgical Repair
 - 5 year intervals

BACKGROUND:

Magnetic resonance angiography (MRA) is a noninvasive technique used to provide cross-sectional and projection images of the thoracic vasculature, including large and medium sized vessels, e.g., the thoracic aorta. It provides images of normal as well as diseased blood vessels and quantifies blood flow through these vessels. Successful vascular depiction relies on the proper imaging pulse sequences. MRA may use a contrast agent, gadolinium, which is non-iodine-based, for better visualization. It can be used in patients who have history of contrast allergy and who are at high risk of kidney failure.

OVERVIEW:

MRA and Coarctation of the Aorta – One of the most common congenital vascular anomalies is coarctation of the aorta which is characterized by obstruction of the juxtaductal aorta. Clinical symptoms, e.g., murmur, systemic hypertension, difference in blood pressure in upper and lower extremities, absent femoral or pedal pulses, may be present. Gadolinium enhanced 3D MRA may assist in preoperative planning as it provides angiographic viewing of the aorta, the arch vessels and collateral vessels. It may also assist in the identification of postoperative complications.

MRA and Pulmonary Embolism (PE) – Note: D-Dimer blood test in patients at low risk* for DVT is indicated prior to MRA imaging. Negative D-Dimer suggests alternative diagnosis in these patients.

Studies show mixed results regarding the value of MRA v CTA in detecting pulmonary embolism. A systematic review and meta-analysis found MRA to be inferior to CTA in detecting PE. Therefore, MRA should be used only if CTA is not available or contraindicated in a specific patient (Li, 2009).

MRA and Thoracic Aortic Aneurysm – One of the most common indications for thoracic MRA is thoracic aortic aneurysm, most often caused by atherosclerosis. These aneurysms may also be due to aortic valvular disease. Aneurysms are defined by their enlargement and patients with rapidly expanding aortas, or with aortic diameters greater than five or six centimeters, are at high risk of rupture and may require surgery.

MRA and Thoracic Aortic Dissection - The most common clinical symptom of aortic dissection is tearing chest pain and the most common risk factor is hypertension. An intimal tear is the hallmark for aortic dissection and intramural hematoma may also be detected. Unfortunately, patients with aortic dissection may be unstable and not good candidates for routine MR evaluation; MRA may be indicated as a secondary study. 3D MRA is also useful in postoperative evaluation of patients with repaired aortic dissections.

MRA and Central Venous Thrombosis – MRA is useful in the identification of venous thrombi. Venous thrombosis can be evaluated by gadolinium enhanced 3D MRA as an alternative to CTA which may not be clinically feasible due to allergy to iodine contrast media or renal insufficiency.

Other MRA Indications – MRA is useful in the assessment for postoperative complications of pulmonary venous stenosis.

MRI and Patent Ductus Arteriosus – Patent ductus arteriosus (PDA) is a congenital heart problem in which the ductus arteriosus does not close after birth. It remains patent allowing oxygen-rich blood from the aorta to mix with oxygen-poor blood from the pulmonary artery. MRI can depict the precise anatomy of a PDA to aid in clinical decisions. It allows imaging in

multiple planes without a need for contrast administration. Patients are not exposed to ionizing radiation.

POLICY HISTORY:

Review Date: May 2019

Review Summary:

- Removed pulmonary embolism indication
- Added indications specifying criteria for follow-up of thoracic aneurysm
- Added statement: "For MRPA (MR Pulmonary Angiography) in patients with intermediate pretest probability with a positive D-dimer or high pretest probability (but only at centers that routinely perform it well and only for patients for whom standard tests are contraindicated)"
- Expanded criteria for congenital malformations
- Updated thoracic aortic disease section for consistency with cardiac guidelines
- Added greater specificity for post op complications

Review Date: May 2020

Review Summary:

- **Thoracic Aortic Disease**
 - Organized into two sections:
 - Initial/Screening
 - Follow-up of known aneurysm/vascular pathology
 - Removed: 'Annual follow up of enlarged thoracic aorta that is above top normal for age, gender, and body surface area'

REFERENCES:

Al-Timmy QAH, Shamseei HF. Intralobar pulmonary sequestration in elderly woman: A rare case report with emphasis on imaging findings. *Radiol Case Rep.* 2016 Sep; 11(3):144–147.

American College of Chest Physicians (ACCP). Choosing Wisely®: Five Things Physicians and Patients Should Question. ACCP. 2013. Retrieved from <http://www.choosingwisely.org/clinician-lists/american-college-chest-physicians-american-thoracic-society-chest-ct-angiography-to-evaluate-possibly-pulmonary-embolism/>.

American College of Radiology (ACR). ACR Appropriateness Criteria®. Published 2014. Revised 2016. Retrieved from <https://acsearch.acr.org/list>.

American College of Radiology (ACR). ACR Appropriateness Criteria®. <https://acsearch.acr.org/list>. Published 2017. Retrieved from March 16, 2018.

Ascha M, Renapurkar RD, Tonelli AR. A review of imaging modalities in pulmonary hypertension. *Ann Thorac Med.* 2017; 12(2):61–73.

Barman M. Acute aortic dissection. *E-Journal European Society of Cardiology.* 2014;12: N° 25 – 02.

Bauer AM, Amin-Hanjani S, Alarj A, et al. Quantitative magnetic resonance angiography in the evaluation of the subclavian steal syndrome: Report of 5 patients. *J Neuroimaging.* 2009; 19:250-252.

Bennet KM, Kent KC, Schumaker J, et al. Targeting the most important complications in vascular surgery. *J Vasc Surg.* 2017;65(3):793-803.

Bonci G, Steigner ML, Hanley M, et al. ACR Appropriateness Criteria®. Thoracic Aorta Interventional Planning and Follow-up. *J Am Coll Radiol.* 2017; 14(11S):S570-S583.

Chavhan GB, Batmanabane V, Muthusami P, et al. MRI of thoracic outlet syndrome in children. *Pediatr Radiol.* 2017; 47:1222-1234.

Choudhury M. Postoperative Management of Vascular Surgery Patients: A Brief Review. *Clin Surg.* 2017; 2: 1584.

Corrigan D, Prucnal C, Kabrhel C. Pulmonary embolism: the diagnosis, risk-stratification, treatment and disposition of emergency department patients. *Clin Exp Emerg Med.* 2016; 3(3): 117–125.

Erbel R, Aboyans V, Boileau C, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and

abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). *Eur Heart J.* 2014; 35(41):2873.

Ferreira TDA, Chagas ISS, Ramos RTT, et al. Congenital thoracic malformations in pediatric patients: two decades of experience. *J Bras Pneumol.* 2015; 41(2): 196-199.

Friedman T, Quencer KB, Kishore SA, et al. Malignant Venous Obstruction: Superior Vena Cava Syndrome and Beyond. *Semin Intervent Radiol.* 2017; 34(4):398.

Hannuksela M, Stattin E, Johansson B, et al. Screening for Familial Thoracic Aortic Aneurysms with Aortic Imaging Does Not Detect All Potential Carriers of the Disease. *Aorta (Stamford).* 2015; 3(1): 1-8.

Hellinger JC, Daubert M, Lee EY, et al. Congenital thoracic vascular anomalies: Evaluation with state-of-the-art MR imaging and MDCT. *Radiol Clin N Am.* 2011; 49:969-996.

Hiratzka LF, Bakris GL, Beckman JA , et al. 2010
ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. *Circulation.* 2010; 121(13):e266.

Karaosmanoglu AD, Khawaja RD, Onur MR, et al. CT and MRI of aortic coarctation: Pre- and postsurgical findings. *AJR Am J Roentgenol.* 2015; 204(3):W224-33.

Keser G, Direskeneli H, Aksu K. Management of Takayasu arteritis: a systematic review. *Rheumatology.* 2014; 53(5):793-801.

Kirsch J, Brown RKJ, Henry TS, et al. ACR Appropriateness Criteria® Acute Chest Pain-Suspected Pulmonary Embolism. *JACR.* 2017; 14(Suppl 5):S2-S12.

Kolandaivelu A. Role of Cardiac Imaging (CT/MR) Before and After RF Catheter Ablation in Patients with Atrial Fibrillation. *J Atr Fibrillation.* 2012; 5(2): 523.

Konstantinides SV, Torbicki A, Agnelli G, et al. 2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism: The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). *European Heart Journal.* 2014; 35(43):-3033-3080.

Li J, Feng L, Li J, et al. Diagnostic accuracy of magnetic resonance angiography for acute pulmonary embolism: A systematic review and meta-analysis. *Vasa.* 2016; 45:149-154.

Long Q, Zha Y, Yang Z. Evaluation of pulmonary sequestration with multidetector computed tomography angiography in a select cohort of patients: A retrospective study. *Clinics (Sao Paulo)*. 2016; 71(7): 392–398.

Lopez-Costa I, Bhalla S, Raptis C. Magnetic resonance imaging for pulmonary hypertension: methods, applications, and outcomes. *Top Magn Reson Imaging*. 2014; 23(1):43-50.

Osiro S, Zurada A, Gielecki J, et, al. A review of subclavian steal syndrome with clinical correlation. *Med Sci Monit*. 2012; 18(5): RA57-RA63.

Pascall E, Tulloh RMR. Pulmonary hypertension in congenital heart disease. *Future Cardiol*. 2018; 14(4): 343–353.

Poletto E, Mallon MG, Stevens RM, et al. Imaging review of aortic vascular rings and pulmonary sling. *J Am Osteopath Coll Radiol*. 2017; 6(2):5-14.

Potter BJ, Pinto DS. Subclavian Steal Syndrome. *Circulation*. 2014; 129:2320–2323.

Povlsen S, Povlsen B. Diagnosing thoracic outlet syndrome: Current approaches and future directions. *Diagnostics (Basel)*. 2018; 8(1):21.

Rose-Jones LJ, McLaughlin VV. Pulmonary hypertension: Types and treatments. *Curr Cardiol Rev*. 2015 Feb; 11(1):73-79.

Schiebler ML, Nagle SK, Francois CJ, et al. Effectiveness of MR angiography for the primary diagnosis of acute pulmonary embolism: Clinical outcomes at 3 months and 1 year. *J Magn Reson Imaging*. 2013; 38:914-925.

Singh B, Mommer SK, Erwin PJ, et al. Pulmonary embolism rule-out criteria (PERC) in pulmonary embolism--revisited: A systematic review and meta-analysis. *Emerg Med J*. 2013;30(9):701-6.

Swift AJ, Rajaram S, Condliffe R, et al. Diagnostic accuracy of cardiovascular magnetic resonance imaging of right ventricular morphology and function in the assessment of suspected pulmonary hypertension results from the ASPIRE registry. *J Cardiovasc Magn Reson*. 2012; 14:40.

Uthof H, Pena C, Katzen BT, et al. Current clinical practice in postoperative endovascular aneurysm repair imaging surveillance. *J Vascular and Interventional Radiology*. 2012; 23(9): 1152–1159.

Zucker EJ, Gnguli S, Ghoshhajra BB, et al. Imaging of venous compression syndromes. *Cardiovasc Diagn Ther*. 2016; 6:519-532.

Reviewed / Approved by
Reviewed / Approved by

M. Atif Khalid MD

M. Atif Khalid, M.D., Medical Director, Radiology
~~VP, Medical Director~~

Disclaimer: Magellan Healthcare service authorization policies do not constitute medical advice and are not intended to govern or otherwise influence the practice of medicine. These policies are not meant to supplant your normal procedures, evaluation, diagnosis, treatment and/or care plans for your patients. Your professional judgement must be exercised and followed in all respects with regard to the treatment and care of your patients. These policies apply to all Magellan Healthcare subsidiaries including, but not limited to, National Imaging Associates ("Magellan"). The policies constitute only the reimbursement and coverage guidelines of Magellan. Coverage for services varies for individual members in accordance with the terms and conditions of applicable Certificates of Coverage, Summary Plan Descriptions, or contracts with governing regulatory agencies. Magellan reserves the right to review and update the guidelines at its sole discretion. Notice of such changes, if necessary, shall be provided in accordance with the terms and conditions of provider agreements and any applicable laws or regulations.