

AmeriHealth Caritas Louisiana

National Imaging Associates, Inc. *	
Clinical guidelines ABDOMEN CT	Original Date: September 1997
CPT Codes: 74150, 74160, 74170	Last Revised Date: May 2020
Guideline Number: NIA(CG)_030	Implementation Date: January 2021 TBD

GENERAL INFORMATION:

It is an expectation that all patients receive care/services from a licensed clinician. All appropriate supporting documentation, including recent pertinent office visit notes, laboratory data, and results of any special testing must be provided. All prior relevant imaging results, and the reason that alternative imaging (gold standard, protocol, contrast, etc.) cannot be performed must be included in the documentation submitted.

GENERAL INFORMATION:

~~It is an expectation that all patients receive care/services from a licensed clinician. All appropriate supporting documentation, including recent pertinent office visit notes, laboratory data, and results of any special testing must be provided. All prior relevant imaging results, and the reason that alternative imaging (gold standard, protocol, contrast, etc.) cannot be performed must be included in the documentation submitted.~~

INDICATIONS FOR ABDOMEN CT:

~~(Cross sectional imaging may supersede ultrasound in patients with large body habitus)~~

~~(Note: For syndromes for which imaging starts in the pediatric age group, MRI preferred)~~

Abdominal Pain for Unknown Etiology:

- CT allowed after initial workup inconclusive
 - Initial imaging such as, ultrasound, scope study, or x-ray
 - Appropriate laboratory testing (chemistry profile, complete blood count, and urinalysis)
 - Amylase lipase if suspected pancreatitis
 - Liver function tests if suspicion of hepatic disease
- For acute abdominal pain in a patient over the age of 65 (ACR, 2018; Lehtimaki, 2017)

* National Imaging Associates, Inc. (NIA) is a subsidiary of Magellan Healthcare, Inc.

1—Abdomen CT

Evaluation of suspicious known mass/tumors (unconfirmed diagnosis of cancer) for further evaluation of indeterminate or questionable findings:

- Initial evaluation of a palpable abdominal or abdominal wall mass/tumor found by physical exam or imaging study, such as ultrasound (US) (ACR, 2019).

~~Surveillance: One follow up exam to ensure no suspicious change has occurred in a tumor in the abdomen. No further surveillance unless tumor(s) are specified as highly suspicious, or change was found on exam or last follow up imaging.~~

~~Evaluation of known cancer for further evaluation of indeterminate or questionable findings, identified by physical examination or imaging exams such as ultrasound (US):~~

- ~~Initial staging of known cancer~~

- ~~All cancers, excluding the following:~~
 - ~~Basal cell carcinoma of the skin (NCCN, 2018).~~
 - ~~Melanoma without symptoms or signs of metastasis (NCCN, 2018; Trotter, 2013).~~

- Follow-up of known cancer (Bourgioti, 2016; [NCCN, 2018](#)):

- Follow-up of known cancer of patient undergoing active treatment within the past year. [For follow up recommendations go to: https://www.nccn.org/professionals/imaging/content/](#)
 - Known cancer with suspected abdominal metastasis based on a sign, symptom or an abnormal lab value.
 - ~~Active monitoring for recurrence as clinically indicated.~~

For evaluation of suspected infection or inflammatory disease based on exam or discovered on previous imaging:

(ACR, 2018; Cartwright, 2015; Sartelli, 2015)

- Right upper quadrant pain for suspected biliary disease with negative or equivocal ultrasound-~~HIDA scan~~
- ~~Suspected cholecystitis or retained gallstones with recent equivocal ultrasound.~~
- For epigastric or left upper quadrant pain if labs or other imaging are inconclusive (Ecanow, 2015)

For evaluation of an organ or abnormality seen on previous imaging:

ADRENAL:

- To locate a pheochromocytoma once there is clear biochemical evidence (may require abdomen and pelvis imaging)
- [Suspected adrenal secreting tumor after full clinical and biochemical work-up \(Fassanacht, 2018; Meek, 2013\)](#)
- Suspected adrenal mass ≥ 1 cm incidentally discovered with no history of malignancy (one follow-up in 6-12 months to document stability).
- If adrenal mass ≥ 4 cm and no diagnosis of cancer, can approve for preoperative planning (surgery to rule out adrenal cortical carcinoma)

2— Abdomen CT

- For adrenal mass < 4 cm with history of malignancy (if \geq 4 cm consider biopsy or PET/CT unless pheochromocytoma is suspected)
- Yearly surveillance for patients with Multiple Endocrine Neoplasia type 1 (MEN1) beginning at age 10 (Kamilaris, 2019).**
- For patients with Von Hippel Lindau, surveillance at least every other year starting at age 16 if MRI contraindicated (Abdominal US starting at age 8) (Varshney, 2017)**
-

LIVER:

- Indeterminate liver lesion > 1 cm seen on ultrasound (~~MRI study of choice but CT can be approved~~** (ACR, 2020)
- Indeterminate liver lesion < 1cm on initial imaging with known chronic liver disease or a history of extrahepatic malignancy.**
- Hepatitis/hepatoma screening after ultrasound is abnormal, equivocal, or non-diagnostic (may be limited in patients who are obese, those with underlying hepatic steatosis, as well as nodular livers (Bruix, 2011; Lee, 2014; Marquardt, 2016; Mayo-Smith, 2017)). (No literature supports the use of AFP alone in the screening of HCC). For jaundice or abnormal liver function tests after equivocal or abnormal ultrasound (Vagvala, 2018).
- For surveillance of HCC in patients who have received liver-directed therapy, surgical resection, medical treatment or transplant (MRI or CT) at one-month post treatment and then every 3 months for up to two years* (Horowitz, 2017; Vagvala, 2018)**
-
- For follow up of suspected adenoma every 6-12 months
- To confirm diagnosis of focal nodular hyperplasia seen on other imaging.
- For follow up of focal nodular hyperplasia (FNH) annually if US is inconclusive (Marrero, 2014)
- ~~For surveillance of HCC in patients who have received liver-directed therapy, surgical resection, medical treatment or transplant (MRI or CT) at one month post treatment and then every 3 months for up to two years* (Horowitz, 2017; Vagvala, 2018)~~
- Pre-procedure for transjugular intrahepatic portosystemic shunt (TIPS) (Gaba, 2011; Farsad, 2014)**
- In patients with Beckwith-Wiedemann syndrome and abnormal ultrasound or rising AFP and MRI is contraindicated (Kalish, 2017).**

PANCREAS:

- Pancreatic cystic lesion found on initial imaging
- Intraductal papillary mucinous neoplasm (IPMN) and mucinous cystic neoplasm (MCN) require surveillance imaging as follows (if MRI/**MRCP** is contraindicated) if indeterminate on initial imaging and duct communication is present and there are no high risk characteristics (see commentbackground section) (Elta, 2018):
 - For incidental and asymptomatic cysts <5 mm, one follow-up at three years (Pandey, 2019)

3— Abdomen CT _____

- For cysts 5 mm–1 cm image every 2 years for 4 years, and if stable can lengthen intervals
- For cysts 1-2 cm image every year for 2 years and if stable every 2 years for 4 years, and if stable can lengthen intervals.

~~For cysts 5 mm–1 cm image every 2 years for 4 years, and if stable can lengthen intervals~~

~~For cysts under 1.5cm1-2cm image every year for 2 years and if stable every 2 years for 4 years, and if stable can lengthen intervals~~
~~ars thereafter separated by age: < 65 with follow up yearly and 65-79 with FU every 2 years.~~

- Cysts that are 1.5-1.9 cm~~2-3 cm~~ followed yearly for 5 years can also use EUS every 6-12 months for 3 years and if stable then yearly, then every 2 years for 4. Cysts that are 2-3 cm can also use EUS every 6-12 months for 3 years and if stable then yearly for 4 years and if stable can lengthen intervals (can also use EUS).
- For lesions > 3 cm MRI/CT or EUS every 6 months for 3 years, then imaging alternating with EUS every year for 4 years and if stable can lengthen intervals
-

- For lesions 20 mm to < 30 mm MRI/CT or EUS biannually for 1 year, then every year until stable
- For lesions > 30 mm MRI/CT or EUS every 6 months for 3 years, then imaging alternating with EUS every year for 4 years and if stable can lengthen intervals (Han, 2018)

● ~~un~~

- Yearly surveillance for individuals determined to have ~~an increased greater than 5%~~ lifetime risk of developing pancreatic cancer (~~if MRI/MRCP and EUS contraindicated~~) starting at age 50, or 10 years younger than the earliest age of cancer affected first degree relative (except with Peutz-Jeghers start at age 30-35; ~~Von Hippel Lindau starting at age 16 at least every other year~~
~~(abdominal US starting at age 8), and Hereditary Pancreatitis starting at age 40 or 20 years after first attack~~)*** (Hu, 2018; Syngal, 2015; NCCN, 2019).
- For patients with MEN 1, yearly surveillance for primary neuroectodermal tumors (pNET) starting at age 10 (EUS also considered).
- For suspected acute pancreatitis with pain and abnormal amylase and lipase and <48-72 hours if ultrasound is inconclusive (ACR, 2019; ~~Vagvala, 2018~~).
- Presentation with atypical signs and symptoms including equivocal amylase and lipase (Mathur, 2015).
- ~~Severe acute pancreatitis, 72-96 hours after onset of symptoms (Leppaniemi, 2019)~~
- Known necrotizing pancreatitis requiring follow up.
- Pancreatitis by history, (including pancreatic pseudocyst) with abdominal pain suspicious for worsening, or re-exacerbation
- For localization of an insulinoma once diagnosis is confirmed (Vinik, 2017).

RENAL:

- For an indeterminate renal mass on other imaging (ACR, 2014)
- ~~Active surveillance for indeterminate cystic renal mass, not a simple renal cyst (Richard, 2017)~~
~~(see Bosniak criteria in comment section)~~

- Active surveillance for patients with tuberous sclerosis and known angiomylipomas angiomylipoma (AML) if MRI is contraindicated (Vos, 2018)
- For surveillance of patients with Von Hippel Lindau at least every other year to assess for clear cell renal cell carcinoma to begin at age 16 (screening with ultrasound starting at around age 8) (Varshney, 2017).
- Follow up for solid renal masses under 1 cm at 6 and 12 months then annually (Herts, 2018)
- Active surveillance for renal cell carcinoma in patients with Birt-Hogg syndrome every 36 months (Gupta, 2017)
-

SPLEEN:

- Incidental findings of the spleen that are indeterminate on other imaging

Other Indications for an Abdominal CT:

- Abdominal pain suspected to be due to an ~~occult~~, spigelian, incisional or epigastric hernia epigastric hernia when physical exam and initial laboratory/urine testing (to exclude other etiologies) and prior imaging (ultrasound AND MRI) is non-diagnostic or equivocal (Abdelmohsen, 2017; Lassandro, 2011; Miller, 2014; Robinson, 2013, Abdelmohsen, 2017) and limited to the abdomen.
- Suspected incarceration or strangulation based on physical exam or prior imaging (Halligan, 2018).

For evaluation of suspected infection or for follow-up known infection:

- Persistent abdominal pain not explained by previous imaging/procedure
- For acute abdominal pain in a patient over the age of 65 (Lehtimaki, 2017; ACR, 2018)
 - Any known infection that is clinically suspected to have created an abscess in the abdomen.
 - Any history of fistula limited to the abdomen that requires re-evaluation, or is suspected to have recurred.
 - Abnormal fluid collection limited to the abdomen seen on prior imaging that needs follow-up evaluation.
- For diagnosis of diverticulitis or appendicitis in an adult if abdominal pain and tenderness to palpation is present and at LEAST one of the following:
 - WBC elevated
 - Fever
 - Anorexia
 - Nausea and vomiting
- Suspected appendicititis in a child after ultrasound has been obtained (Choosing Wisely, ACR/AAP/ACS).
- Suspected peritonitis (from any cause) if abdominal pain and tenderness to palpation is present, and at LEAST one of the following:
 - Rebound, guarding or rigid abdomen OR

5— Abdomen CT

- Severe tenderness to palpation over the entire abdomen
- ~~Complications of diverticulitis with severe abdominal pain or severe tenderness or mass, not responding to antibiotic treatment, (prior imaging study is not required for diverticulitis diagnosis (Cartwright, 2015)~~

For evaluation of suspected inflammatory disease or follow-up (also approve CT pelvis):

- For suspected of inflammatory bowel disease (Crohn's or ulcerative colitis) with abdominal pain, and persistent diarrhea, or bloody diarrhea (Arif-Tiwari, 2019; Kilcoyne, 2016).
- Known inflammatory bowel disease, (Crohn's or ulcerative colitis) with recurrence or worsening signs/symptoms requiring re-evaluation

Pre-operative evaluation:

- For abdominal surgery or procedure.

Post-operative/procedural evaluation:

- Follow-up of known or suspected post-operative complication involving only the abdomen.
- A follow-up study to help evaluate a patient's progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed.

Indication for combination studies for the initial pre-therapy staging of cancer, OR active monitoring for recurrence as clinically indicated OR evaluation of suspected metastases:

- ≤ 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.

Combination studies with Abdomen CT:

- **Abdomen CT/Pelvis CT/Chest CT/Neck MRI/Neck CT with MUGA** – known tumor/cancer for initial staging or evaluation before starting chemotherapy or radiation treatment.

If an Abdomen/Pelvis CT combo is indicated and the Abdomen CT has already been approved, then the Pelvis CT may be approved.

BACKGROUND:

CT provides direct visualization of anatomic structures in the abdomen and pelvis and is a fast imaging tool used to detect and characterize diseases involving the abdomen and pelvis. Abdominal imaging begins at the diaphragm and extends to the umbilicus or iliac crests.

CT uses x-rays and multiple detectors to create cross sectional images of the normal anatomy, as well as demonstrate abnormal soft tissue densities, calcifications or fluid/gas patterns in the viscera or peritoneal space.

In general, ionizing radiation from CT should be avoided during pregnancy. Ultrasound is clearly a safer imaging option and is the first imaging test of choice, although CT or MRI after equivocal ultrasound has been validated for diagnosis. Clinicians should exercise increased caution with CT imaging in children, and young adults due to the risks of exposure to ionizing radiation. Screening for pregnancy as part of a work-up is suggested to minimize the number of unexpected radiation exposures for women of childbearing age.

Cross sectional imaging (liver ultrasound with Doppler, CT or MRI) should be completed no more than a month prior to the Transjugular Intrahepatic Portosystemic Shunt (TIPS) to assess for vascular patency and look for hepatic masses or other problems that could complicate the procedure.

Post procedure, an ultrasound of the liver a day after to assess shunt patency. Hepatic encephalopathy (HE) is the most common complication and usually occurs 2-3 weeks after insertion of TIPS. Unique complications may include intravascular hemolysis and infection of the shunt. Other complications can include capsule puncture, intraperitoneal bleed, hepatic infarction, fistula, hematobilia, thrombosis of stent, occlusion or stent migration and may require cross sectional imaging.

Follow up and maintenance imaging if complications suspected include Doppler ultrasound to assess shunt velocity. If asymptomatic sonogram performed at 4 weeks post placement, then every 6 months to a year. The gold standard for shunt patency is portal venography, usually reserved if concern for shunt occlusion.

OVERVIEW:

Ultrasound should be considered prior to a request for Abdomen CT for the following evaluations:

- Possible gallstones or abnormal liver function tests.
- Evaluation of cholecystitis.
- Follow up for aortic aneurysm.

Screening for Hepatocellular carcinoma (HCC): AASLD (American Association for the Study of Liver Diseases) recommends screening for HCC with ultrasound every 6 months for patients with hepatitis C and B (Bruix, 2011). The literature differs on the role of AFP (alpha fetoprotein) in the screening of HCC. Some authors argue against its use altogether due to its lack of sensitivity and specificity in detecting HCC (Bruix, 2011; Marquardt, 2016) and instead recommend ultrasound alone for screening. According to Marquardt the AASLD and EASLD (European Association for the Study of the Liver) "do not endorse its [AFP] use in clinical routine, neither alone nor in combination with ultrasound". This approach is supported by reports of patients with chronic viral hepatitis and elevated AFP but normal livers on imaging. AFP elevation in these cases is due to hepatic inflammation and viral replication (Patil, 2013), not neoplasm. Others advocate for combined ultrasound and AFP for screening ([Tan, 2011](#); Tzartzeva, 2018;[Tan, 2011](#)) citing increased sensitivity compared to ultrasound alone in detecting early stage HCC particularly in cirrhotic patients. In a meta-analysis by Tzartzeva, et al of thirty-two studies (13,367 patients with cirrhosis), ultrasound with AFP had a 63% sensitivity of detecting early stage HCC, compared to 45% for ultrasound alone. In the final analysis, no literature supports the use of AFP alone in the screening of HCC.

Although most international groups recommend US screening and surveillance for HCC, the evidence to support this practice is weak. The recommendation for screening with US every 6 months by the AASLD is based on a prospective Chinese study of hepatitis B patients that showed that patients who had an US survived longer. However, there is no good evidence to show that these results apply to the population in the United States, which has a much higher percentage of obese patients, fewer patients with chronic hepatitis B, and many more patients with alcoholic cirrhosis, often with hepatitis C and NAFLD (and the role of surveillance in NAFLD without cirrhosis is unclear). US is insensitive for detection of HCC in patients with hepatic steatosis, as well as, nodular cirrhotic livers who are undergoing surveillance. The regenerative nodules in cirrhotic livers alter the background hepatic echotexture, making HCC difficult to detect. Another inherent limitation of US is its operator dependence (ACR, 2017).

- Incidental liver lesions – “Incidental hepatic lesions that are ≥ 1 cm and have distinctly benign imaging features do not require follow-up. Such features include sharp margin, homogeneous low attenuation (≤ 20 HU) on noncontrast or portal venous–phase imaging, or characteristic features of hemangiomas, FNH, or perfusional changes (including focal fatty sparing or deposition). Incidental hepatic lesions that are ≥ 1 cm and have suspicious imaging features require further workup with prompt MRI or biopsy, depending on the lesion’s size and features and the patient’s risk level. Suspicious imaging features include ill-defined margins, heterogeneous density, mural thickening or nodularity, thick septa, and intermediate to high attenuation on portal venous–phase imaging (>20 HU, in the absence of pseudoenhancement).”

A diagnosis of HCC can be made with CT or MRI if the typical characteristics are present: a solid FLL with enhancement in the arterial phase with washout in the delayed venous phase should be considered to have HCC until otherwise proven (strong recommendation, moderate quality of evidence). If the characteristic features are not seen on imaging, a biopsy may be indicated.

“A study by Serst et al, performed CT, MRI, and biopsy for a series of 74 patients with nodules identified by surveillance ultrasound. The authors concluded that sensitivity and specificity of the combination of the two diagnostic tests was 98% and 81%, respectively, and that biopsy could be reserved for those without definitive findings on either CT or MRI” (Heimbach, 2018).

A CT or MRI should be performed in cirrhotics with an ultrasound showing a lesion of > 1 cm, an elevated or rising α -fetoprotein in the absence of a liver lesion on US, or when there is a clinical suspicion for the presence of HCC. The choice of MRI versus CT is controversial at this time.

**Surveillance for HCC is required for patients who have received liver-directed therapy, surgical resection, medical treatment, or a transplant for HCC. However, because of the higher risk of tumor recurrence, US is not typically used for surveillance for HCC in the first 2 years after treatment. The European Association for the Study of the Liver recommends multiphase CT or MRI to assess response 1 month after resection or locoregional or systemic therapies, followed by one imaging technique every 3 months to complete at least 2 years, and then regular US every 6 months.

This schedule is more frequent than some of the other society recommendations and the most common practice among interventional radiologists (every 3 months).

The AASLD (American Association for the Study of Liver Diseases) recommends screening for the following high-risk groups: Asian male hepatitis B carriers over age 40, Asian female hepatitis B carriers over age 50, hepatitis B carriers with a family history of HCC, Africans and African Americans with hepatitis B, cirrhotic hepatitis B carriers, individuals with hepatitis C cirrhosis, individuals with stage 4 primary biliary cholangitis cirrhosis, individuals with genetic hemochromatosis and cirrhosis, individuals with alpha 1-antitrypsin deficiency and cirrhosis, individuals with cirrhosis from other etiologies.

We scan patients with cirrhosis from any etiology every 6 months with ultrasound. Ultrasonography remains the primary imaging modality of choice for HCC surveillance. It is more cost-effective than CT and MRI, and more widely available. A meta-analysis reported a sensitivity of 94% in detecting lesions and a specificity of >90%, although the figures were less favourable for lesions measuring less than 2 cm. The sensitivity for early HCC is 63%. Although our liver clinic routinely uses alpha-fetoprotein as an adjunct to imaging screening, it is acknowledged that it is neither sensitive nor specific for early diagnosis of HCC (Willatt, 2018).

CT for incidental adrenal mass: In general, masses found < 1 cm do not need to be pursued. If an adrenal mass has diagnostic features of a benign mass such as a myelolipoma (presence of macroscopic fat), cyst, or hemorrhage (masses without enhancement, defined as change in pre- and postcontrast imaging of <10 HU), no additional workup or follow-up imaging is needed. If the mass has a density of 10 HU on unenhanced CT or signal loss compared with the spleen between in- and opposed-phase images of a chemical-shift MRI (CS-MRI) examination, these features are almost always diagnostic of a lipid-rich adenoma, regardless of size. If no benign imaging features but stable for a year or longer, very likely benign and needs no further imaging. The role of adrenal mass biopsy is reserved predominantly to confirm a suspected adrenal metastasis; this procedure has been shown to be safe with a low morbidity. If there are signs or symptoms of pheochromocytoma, plasma-fractionated metanephhrine and normetanephhrine levels should be obtained prior to biopsy. Otherwise endocrine workup of an incidental adrenal mass is controversial. Current guidelines from the American Association of Clinical Endocrinologists and the American Association of Endocrine Surgeons recommend an initial biochemical evaluation of all adrenal incidentalomas to exclude pheochromocytoma, subclinical Cushing's syndrome, and hyperaldosteronism.

Genetic syndromes and adrenal tumors: Adrenal cortical carcinoma (ACC) diagnosed during childhood is known to be commonly associated with hereditary syndromes including Beckwith-Wiedemann (BWS) and Li-Fraumeni syndrome (LFS). In adults, ACC may be associated with Multiple Endocrine Neoplasia 1 (MEN1), familial adenomatous polyposis coli and neurofibromatosis type 1 (NF1), however there are currently no surveillance imaging recommendations (Tobias, 2012).

CT of the kidney- Recommendations for follow up of a complex cystic renal mass are made using Bosniak criteria (Muglia, 2014):

- Bosniak I (water density 0-20 HU); no further follow up

9— Abdomen CT

- Bosniak II (one or a few thin septations, small or fine calcifications, hyperdense cysts up to 3 cm); no further follow up
- Bosniak IIF felt to be benign but too complex to be diagnosed with certainty; image at 6 and 12 months, then annually for 5 years if no progression
- Bosniak III thick-walled cystic lesions with wall or septal enhancement; resection favored vs conservative management and RFA in select cases (Richard, 2017)
- Bosniak IV malignant cystic renal mass with enhancing soft tissue components; resection favored-malignant until proven otherwise

Screening for pancreatic cancer:

*** Pancreatic cancer is thought to have a familial or hereditary component in approximately 10% of cases. Surveillance of individuals with genetic predisposition for pancreatic adenocarcinoma should include known mutation carriers from hereditary syndromes such as Peutz-Jeghers (10-30% lifetime risk), hereditary pancreatitis (which is associated with genes PRSS1 and SPINK1), familial atypical multiple melanoma and mole syndrome (10-30% risk) or for members of familial pancreatic cancer with a first degree family member with pancreatic cancer. In patients who are mutation carriers in BRCA2 (5-10% lifetime risk), PALB2 (5-10% lifetime risk), and Lynch syndrome (5-10%) families. - Surveillance for patients with BRCA1 (2% lifetime risk) and ATM serine/threonine kinase (1-5% lifetime risk) is limited to those with first or second degree relatives with pancreatic cancer. NCCN also recommends screening for individuals with a known pathogenic/likely pathogenic germline variant in a pancreatic susceptibility gene including CDKN2A, MLH1, MLH2, MSH6, PMS2, EPCAM (mismatch repair genes associated with Lynch syndrome), ATM, PALB2, STK11, TP-53 and a family history (first or second degree relative) from the same side of the family; or a family history of exocrine pancreatic cancer in ≥ 2 first degree relatives from the same side of the family or ≥ 3 first and second degree relatives from the same side of the family (and at least one is a first degree relative) (NCCN, 2019; Goggins, 2020; Daly, 2020).

Patients with a family history of pancreatic cancer affecting two first-degree relatives meet criteria for familial pancreatic cancer and are candidates for genetic testing. - It should be noted that 90% of families meeting criteria for familial pancreatic cancer, will not have a pathogenic mutation (Stoeffel, 2019).

Insulinomas are rare pancreatic tumors. Localization of the tumor by ultrasound and CT are the preferred initial options once a diagnosis has been made, followed by endoscopic ultrasound or arterial stimulation with hepatic venous sampling. Whipples triad includes symptoms of hypoglycemia, low blood glucose relieved by ingestion of glucose, and benign 90%. Work up prior to imaging should include: a 72 hour fast with serial glucose and insulin levels over this period until the patient becomes symptomatic. An insulin/glucose ration of greater than 0.3 has been found in virtually all patients with insulinoma or other islet cell disease (Vinik, 2017).

Surveillance of Pancreatic Cysts: Some pancreatic cysts have the potential for malignant transformation to invasive ductal adenocarcinoma, hence the need for intervention vs surveillance, however the data is unclear as to the risk of cancer. Cyst surveillance can be offered to patients with

asymptomatic cysts presumed to be IPMN's or MCN's. Pancreatic cystic Neoplasms (PCN) make up about 2-45% of the general population.

High risk characteristics for mucinous pancreatic cysts include all of the following: Symptoms, Jaundice secondary to the cyst, acute pancreatitis secondary to the cyst, elevated serum CA 19-9 and no benign cause present, an enhancing mural nodule or solid component within the cyst or pancreas, main pancreatic duct of > 5mm, change in duct calibre with upstream atrophy, size over 3 cm, high grade dysplasia or cancer on cytology. These patients should undergo EUS + -FNA or be referred to a multidisciplinary group for further recommendations (Elta, 2018;).

CT and elevated Liver Function Tests: For elevated bilirubin, or serum transaminases with or without bilirubin elevation, US is the initial recommended test to assess for duct dilatation which might lead to ERCP or MRCP, vs other causes which might necessitate further lab testing or liver biopsy. (Kwo, 2017).

Combination request of Abdomen CT/Chest CT - A Chest CT will produce images to the level of L3. Documentation for combo is required.

REDUCING RADIATION EXPOSURE:

CT ureography Utilization of appropriate imaging techniques can reduce radiation exposure in performance of CT ureography. Some protocols may result in 15-35 mSv of exposure. In the article by Chow, et al. a technique involving administration of IV contrast in two boluses separated by a suitable time delay, allows nephrographic and excretory phases to be acquired in a single imaging pass. This allows for full non-contrast and contrast imaging to be obtained with two imaging passes.

Consider the role of barium contrast studies Effective doses for fluoroscopic SBFT (small bowel follow through) imaging ranged between 1.37-3.83 mSv for the right lower quadrant, central abdomen and pelvis, respectively. The findings by Jaffe, et al suggest a modified examination for Crohn's disease indications would have lower effective doses than these. For MDCT the effective dose was 16.1 mSv. This indicates a 5 fold increase in the use of MDCT over SBFT.

For patients with Crohn's disease, efforts should be made to minimize the number of CT examinations, decrease the CT dose or consider MR Enterography. Limitations of SBFT include partial evaluation of extramucosal and extraluminal disease, impaired evaluation of small bowel loops, especially those inaccessible in the deep pelvis.

Work up for distant metastasis in the initial evaluation of melanoma Multiple studies, including the two authored by Miranda and Yancovitz, indicate that imaging studies including Chest x-ray, Chest CT, Abdomen/Pelvis CT, Brain CT or Brain MRI in the absence of symptoms or findings of metastatic disease have extremely low yields (<1%) in the survey evaluation of newly diagnosed melanoma, even in the presence of a positive sentinel node biopsy. The further work-up of the more common benign incidental finding (5-7%) on these studies lead to many more diagnostic tests, including surgery, which are seldom warranted.

~~Pre-operative evaluation of primary rectal cancer—Abdomen CT may detect hepatic and extra-hepatic disease relevant to decision making and prognosis in rectal cancer but complete imaging through the pelvis does not add useful information. The area of the pelvis in pre-operative evaluation of rectal cancer is better defined by Pelvis MRI.~~

POLICY HISTORY:

Review Date: May 2019

Review Summary:

- For evaluation of suspected infection or inflammatory disease, Added:
 - Right upper quadrant pain for suspected biliary disease with negative or equivocal US or HIDA scan
 - For epigastric or left upper quadrant pain if labs or other imaging are inconclusive
- For evaluation of an organ or abnormality seen on previous imaging
 - Removed: For the evaluation of an organ enlargement such as splenomegaly or hepatomegaly as evidenced by physical exam or confirmed on any previous imaging study”
 - Added: To locate a pheochromocytoma once there is clear biochemical evidence
 - Changed adrenal indications from mass >4 cm to ≥ 1 cm with no hx of malignancy; AND adrenal mass ≥ 4 cm and no diagnosis of cancer, can approve for preoperative planning; AND adrenal mass <4 cm with history of malignancy
- Added indications for: liver lesions, adenoma, hyperplasia; modified hepatitis/hepatoma screening; pancreatic cystic lesions, pancreatitis, pancreatic cancer risk; renal mass; spleen
- Modified hernia indications from suspected spigelian hernia or hernia with suspected complications to occult hernia when physical exam or prior imaging is non diagnostic or equivocal
- Removed follow-up for peritonitis; evaluation of trauma; unexplained weight loss; removed age restrictions for abdominal pain
- Added Background information and updated references

Review Date: May 2020

Review Summary:

- Added at top of guideline- For syndromes with imaging started in pediatric age group, MRI preferred
- Removed Surveillance of cancer. Deleted active monitoring for recurrence as clinically indicated.
- Removed suspected cholecystitis or retained gallstones as an indication for CT. Would require an MRCP or ERCP.
- Added indication for suspected adrenal secreting tumor

- Added surveillance for MEN 1 and Von Hippel Lindau; also Beckwith-Wiedemann syndrome (if abnormal US or rising AFP); Added multiple indications for surveillance for patients with increased lifetime risk of pancreatic cancer; also for surveillance for renal cell cancer in Birt-Hogg syndrome
- Added pre procedural imaging prior to transjugular intrahepatic portosystemic shunt (TIPS)
- Added imaging for indeterminate liver lesion < 1 cm with known chronic liver disease or a history of extrahepatic malignancy (ACR, 2020)
- Added follow up for pancreatic cystic masses under 5mm (possible IPMN)
- Added for localization of an insulinoma
- Expanded section on hernia imaging
- Removed diverticulitis and appendicitis since need CT of the abdomen and pelvis
- Expanded background section to include: Genetic syndromes associated with adrenal tumors, improved on Bosniak criteria; Improved indications for screening for pancreatic cancer; Added section on work up for insulinoma; Added section on CT and elevated liver function tests; Removed reduction radiation exposure, consider barium studies for inflammatory bowel disease; work up for distant mets in melanoma, and pre-operative evaluation of primary rectal cancer.

REFERENCES:

[ACOG Practice Bulletin: Clinical Management Guidelines for Obstetricians and Gynecologists: Polycystic Ovary Syndrome. June 2018;194.](#)

[Adelmohsen, M, and El-sharkawy, M. Imaging of Hernias. Hernia. August 30, 2017.](#)

Adeyemo D, Hutchinson R. Preoperative staging of rectal cancer: Pelvic MRI plus abdomen and pelvic CT. Does extrahepatic abdomen imaging matter: A case for routine thoracic CT. *Colorectal Dis.* 2009; 11(3):259-263. <http://web.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=7&hid=15&sid=8030bc9d-e7f9-4a62-981c-4baa83b2c027%40sessionmgr13>.

[American College of Obstetricians and Gynecologists' \(ACOG\) Practice Bulletin: Clinical Management Guidelines for Obstetricians and Gynecologists: Polycystic Ovary Syndrome. 2018 June; 194.](#)

American College of Radiology (ACR). ACR Appropriateness Criteria®. <https://acsearch.acr.org/list>. Published 2012.

American College of Radiology (ACR). ACR Appropriateness Criteria®. <https://acsearch.acr.org/list>. Published 2014.

[American College of Radiology \(ACR\). ACR Appropriateness Criteria. <https://acsearch.acr.org/list>. Published 2018.](#)

American College of Radiology (ACR). ACR Appropriateness Criteria®. <https://acsearch.acr.org/list>. Published 2012-2020. <https://acsearch.acr.org/list>. 9.

Arif-Tiwari H, Taylor P, Kalb BT, et al. Magnetic resonance enterography in inflammatory bowel disease. *Applied Radiol.* 2019 Jan-Feb; pg8.

Bosch X, Monclús E, Escoda O, et al. Unintentional weight loss: Clinical characteristics and outcomes in a prospective cohort of 2677 patients. *PLoS One.* April 7, 2017; 12(4):e0175125. <https://doi.org/10.1371/journal.pone.0175125>. <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175125>. Retrieved February 15, 2018.

Bruix J, Sherman M, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: An update. *Hepatology.* March 2011; 53(3):1020-1022. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084991/>. Retrieved February 13, 2018.

Cartwright SL, Knudson MP. Diagnostic imaging of acute abdominal pain in adults. *Am Fam Physician.* 2015 Apr; 91(7):452-9. <https://www.aafp.org/afp/2015/0401/p452.html>. Retrieved February 7, 2018.

Chaikof EL, Dalman RL, Eskandari MK, et al. The Society for Vascular Surgery practice guideline on the care of patients with an abdominal aortic aneurysm. *J Vasc Surg*. 2018 Jan; 67(1):2-77.

[Charnow, JA. CT Scans Overused in Emergency Departments for Kidney Stone Imaging, Renal and Urology News; American Urological Association Meeting, 2019](#)

Choosing Wisely®. Lists. <http://www.choosingwisely.org/clinician-lists/#topic-area=Radiology>.

[Clements, O., Eliaho, J., et al. Risk Factors for intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysis. J Hepatology. 2020; 72\(1\).](#)

[Daly, MB., and Pilarski, RP. NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic Version 1.2020. J Natl Compr Canc Netw. 2020; 18\(4\).](#)

Darcy M. Evaluation and management of transjugular intrahepatic portosystemic shunts. *AJR Am J Roentgenol*. 2012 Oct; 199(4):730-6.

Dariushnia SR, Haskal ZJ, Midia M, et al. Quality improvement guidelines for transjugular intrahepatic portosystemic shunts. *J Vasc Interv Radiol*. 2016 Jan; 27(1):1-7.

[Del Chiaro M, Besselink MG, Scholten L, et al. European evidence-based guidelines on pancreatic cystic neoplasms. Gut. 2018 May; 67\(5\):789-804.](#)

Ecanow JS, Gore RM. Evaluating patients with left upper quadrant pain. *Radiol Clin North Am*. 2015 Nov; 53(6):1131-57.

[Elta, GH., Enestvedt, BK., et al. ACG Clinical Guideline: Diagnosis and Management of Pancreatic Cysts. Am J Gastroenterology. 27 Feb 2018.](#)

[European evidence-based guidelines on pancreatic cystic neoplasms \(The European Study Group on Cystic Tumors of the Pancreas\) March 28.2018](#)

Farsad K, Kolbeck KJ. Clinical and radiologic evaluation of patients before TIPS creation. *AJR Am J Roentgenol*. 2014 Oct; 203(4):739-45.

[Fassnacht M, Dekkers O, Else T, et al. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol. 2018 Oct 1; 179\(4\):G1-46.](#)

[Gaba, RC., Khiatani, M., et al. Comprehensive Review of TIPS Technical Complications and How to Avoid Them. AJR. 2011; 196:675-685.](#)

Goggins, M, Overbeek, KA, et al. Management of patients with increased risk for familial pancreatic cancer: Updated recommendations from the International Cancer of the Pancreas (CAPS) Consortium. *Gut*. 2020; 69:7-17.

Gore RM, Pickhardt PJ, Mortele KJ, et al. Management of incidental liver lesions on CT: A white paper of the AJR incidental findings committee. *J Am Coll Radiol*. 2017 Nov; 14(11):1429-37.

Gupta, S, Hyunseon, C, et al. The ABC's of BHD. An In-Depth Review of Birt-Hogg-Syndrome. *AJR*. Dec, 2017 Dec; Vol.209(6).

Halligan, S, Parker, SG, et al. Imaging complex ventral hernias, their surgical repair, and their complications. *Eur Radiol*. 2018; (8):3570-3569.

Han Y, Lee H, Kang JS, et al. Progression of pancreatic branch duct intraductal papillary mucinous neoplasm associates with cyst size. *Gastroenterology*. 2018 Feb; 154(3):576-84.

Hara AK, Leighton JA, Sharma VK, et al. Small bowel: Preliminary comparison of capsule endoscopy with barium study and CT. *Radiology*. 2004; 230(1):260-265.
<http://radiology.rsna.org/content/230/1/260.full.pdf+html>.

Harder JN, Hany TF, Von Schulthess GK, et al. Pathologies of the lower abdomen and pelvis: PET/CT reduces interpretation due to urinary contamination. *Clin Imaging*. 2008; 32(1):16-21.
<http://www.ncbi.nlm.nih.gov/pubmed/18164389>.

Heimbach JK, Kulik, LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. *Hepatology*. 2018 Jan; 67(1):358-80.

Herts BR, Silverman SG, Hindman NM, et al. Management of the incidental renal mass on CT: A white paper of the ACR Incidental Findings Committee. *J Am Coll Radiol*. 2018 Feb; 15(2):264-73.

Horowitz JM, Kamel IR, Arif-Tiwari H, et al. ACR Appropriateness Criteria® Chronic Liver Disease. *J Am Coll Radiol*. 2017; 14(11S):S391-405.

Hu C, Hart SN, Polley EC, et al. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. *JAMA*. 2018 Jun 19; 319(23):2401-09.

Kalish, JM, Doros, L, et al. Surveillance Recommendations for Children with Overgrowth Syndromes and Predisposition to Wilms Tumors and Hepatoblastoma. *Clin Cancer Res*. 2017 Jul 1; 23(13):e115-e122.

Kamilaris, CD, abd-Stratakis, CA. Multiple Endocrine Neoplasia Type 1 (MEN1): An Update and the Significance of Early Genetic and Clinical Diagnosis. *Front Endocrinol (Lausanne)*. 2019; 10:339.

Khosa F, Krinsky G, Macari M, et al. Managing incidental findings on abdominal and pelvic CT and MRI, Part 2: White paper of the ACR Incidental Findings Committee II on vascular findings. *J Am Coll Radiol*. 2013; 10(10):789-794. doi: 10.1016/j.jacr.2013.05.021.

Kilcoyne A, Kaplan JL, Gee MS. Inflammatory bowel disease imaging: Current practice and future directions. *World J Gastroenterol*. 2016 Jan 21; 22(3):917-32.

Krajewski S, Brown J, Phang P, et al. Impact of computed tomography of the abdomen on clinical outcomes in patients with acute right lower quadrant pain: a meta-analysis. *Can J Surg*. February 2011; 54(1):43-53. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038359/pdf/0540043.pdf>.

Kranokpiraksa P, Kaufman JA. Follow-up of endovascular aneurysm repair: Plain radiography, ultrasound, CT/CT angiography, MR imaging/MR angiography, or what? *J Vasc Interv Radiol*. June 2008; 19(6 Suppl):S27-S36. [http://www.jvir.org/article/S1051-0443\(08\)00282-0/abstract](http://www.jvir.org/article/S1051-0443(08)00282-0/abstract).

Kwo, PY, Cohen, SM, et al. ACG Clinical Guideline: Evaluation of Abnormal Liver Chemistries. Am J Gastroenterol. 2017; 112:18-35.

Lassandro F, Iasiello F, Pizza NL, et al. Abdominal hernias: Radiological features. *World J Gastrointest Endosc*. June 16, 2011; 3(6):110-117. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158902/>. Retrieved February 8, 2018.

Lee SS, Park SH. Radiologic evaluation of nonalcoholic fatty liver disease. *World J Gastroenterol*. 2014 Jun 21; 20(23):7392-7402.

Lehtimaki, TT, Valtinen, H, et al. A randomised clinical trial of routine versus selective CT imaging in acute abdomen: Impact of patient age on treatment costs and hospital resource use. Eur J Radiol. 2017; 87:1-7.

Leppaniemi, A, Tolonen, M, et al. 2019 WSES guidelines for the management of severe acute pancreatitis. World Journal of Emergency Surgery. 2019; article number 27.

Marquardt JU, Nguyen-Tat M, Galle PR, et al. Surveillance of hepatocellular carcinoma and diagnostic algorithms in patients with liver cirrhosis. *Visc Med*. 2016 Apr; 32(2):110-115. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926879/>.

Marrero JA, Ahn J, Rajender RK, et al. ACG clinical guideline: The diagnosis and management of focal liver lesions. *Am J Gastroenterol*. 2014 Sep; 109(9):1328-47.

Mathur A, Whitaker A, Kolli H, et al. Acute pancreatitis with normal serum lipase and amylase: A rare presentation. *JOP-Journal of the Pancreas*. September 30, 2015. <http://pancreas.imedpub.com/acute-pancreatitis-with-normal-serum-lipase-and-amylase-a-rare-presentation.php?aid=7509>.

Mayo-Smith WW, Song JH, Boland GL, et al. Management of incidental adrenal masses: A white paper of the ACR Incidental Findings Committee. *J Am Coll Radiol*. 2017 Aug; 14(8):1038-44.

Megibow AJ, Baker ME, Morgan DE, et al. Management of incidental pancreatic cysts: A white paper of the ACR Incidental Findings Committee. *J Am Coll Radiol*. 2017 Jun; 14(7):911-23.

Miller J, Cho J, Michael MJ, et al. Role of imaging in the diagnosis of occult hernias. *JAMA Surg*. October 2014; 149(10):1077-1080. doi: 10.1001/jamasurg.2014.484. Retrieved February 15, 2018.

Molla N, AlMenieir N, Simoneau E, et al. The role of interventional radiology in the management of hepatocellular carcinoma. *Curr Oncol*. 2014 Jun; 21(3):e480-92.

Muglia VF, Westphalen AC. Bosniak classification for complex renal cysts: History and critical analysis. *Radiol Bras*. 2014 Nov-Dec; 47(6):368-73.

Meek, CL, Bravis, V, Don A, et al. Polycystic Ovary Syndrome and the Differential Diagnosis of Hyperandrogenism. The Obstetrician and Gynecologist. 2013.

National Comprehensive Cancer Network (NCCN). NCCN Imaging Appropriate Use Criteria (NCCN Imaging AUC). 2019.

<https://www.nccn.org/professionals/imaging/default.aspx>.

Neville AM, Paulson EK. MDCT of acute appendicitis: Value of coronal reformations. *Abdomen Imaging*. 2009; 34(1):42-48. doi: 10.1007/s00261-008-9415-5. <http://www.ncbi.nlm.nih.gov/pubmed/18493813>.

Pandey, P, Pandey, A, et al. Follow-Up of Incidentally Detected Pancreatic Cystic Neoplasms: Do Baseline MRI and CT Features Predict Cyst Growth? Radiology. 2019;: 292(3).

Patil M, Sheth KA, Adarsh CK. Elevated alpha fetoprotein, no hepatocellular carcinoma. *J Clin Exp Hepatol*. June 2013; 3(2):162-164. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940329/>. Retrieved February 6, 2018.

Pena, AS, Witchel, SF, et al. Adolescent polycystic ovary syndrome according to the international evidence-based guideline. BMC Med. 2020; 18:72.

Pickhardt P, Lawrence E, Pooler B, et al. Diagnostic performance of multidetector computed tomography for suspected acute appendicitis. *Ann Intern Med*. 2011; 154(12):789. <http://annals.org/article.aspx?volume=154&page=789>.

Richard PO, Patrick PD, et al. CUA guideline on the management of cystic renal lesions. *Can Urol Assoc J.* 2017 March-April; 11(3-4).

Robinson A. A systematic review and meta-analysis of the role of radiology in the diagnosis of occult inguinal hernia. *Surg Endosc.* January 2013; 27(1):11-18.

<https://www.ncbi.nlm.nih.gov/pubmed/22733195>. Retrieved February 8, 2018

Sartelli M, Moore FA, Ansaloni L, et al. A proposal for a CT driven classification of left colon acute diverticulitis. *World J Emerg Surg.* 2015; 10:3.

Syngal S, Brand RE, Church JM, et al. ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. *Am J Gastroenterol.* 2015 Feb; 110(2):223-62.

Tan CH, Low SC, Thng CH. APASL and AASLD consensus guidelines on imaging diagnosis of hepatocellular carcinoma: A review. [Published online ahead of print April 19, 2011]. *Int J of Hepatol.* 2011; 2011:519783. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170828/>. Retrieved February 14, 2018.

Richard, PO., Patrick, PD et.al. CUA guideline on the management of cystic renal lesions. *Can Urol Assoc J;* 2017 March-April, 11 (3-4)

Terzolo, M., Ali, A., Reimondo G, et. al. The value of dehydroepiandrosterone sulfate measurement in the differentiation between benign and malignant adrenal masses. *European Journal of Endocrinology.* {2000 June;} 142: 611-617.

Thakker, RV, Newey, GV, et. al. Clinical Practice Guidelines for Multiple Endocrine Neoplasia Type I (MEN1). *J Clin Endocrinol Metab.* 2012; 97(9).

Tobias, E. Association of Adrenocortical Carcinoma with Familial Cancer Susceptibility Syndromes. *Mol Cell Endocrinol.* 2012 March 31; 351(1):66-70.

Trotter SC, Sroa N, Winkelmann RR, et al. A global review of melanoma follow-up guidelines. *J Clin Aesthet Dermatol.* September 2013; 6(9):18-26.

<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3780800/>. Retrieved February 7, 2018.

19— Abdomen CT

Tzartzeva K, Obi J, Rich NE, et al. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: A meta-analysis. [Published online ahead of print February 6, 2018]. *Gastroenterology*. May 2018; 154(6):1706-1718.ei.
https://www.ncbi.nlm.nih.gov/pubmed/?term=Tzartzeva%20K%5BAuthor%5D&cauthor=true&cauthor_uid=29425931. Retrieved February 14, 2018.

US Preventive Services Task Force (USPSTF). *Abdominal Aortic Aneurysm: Screening*. AHRQ: Agency for Healthcare Research and Quality.
<http://www.uspreventiveservicestaskforce.org/uspstf/uspsaneu.htm>. Published March 2017.

US Preventive Services Task Force (USPSTF). *Colorectal Cancer: Screening*.
<https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/colorectal-cancer-screening2>. Published 2016. Retrieved January 22, 2018.

Vagvala SH, O'Connor SD. Imaging of abnormal liver function tests. *Clin Liver Disease*. 2018 May; 11(5):128-34.

Varshney, N., Kebede, AA., et al. A Review of Von Hippel-Lindau Syndrome. *J Kidney Cancer VHL*. 2017; 4(3):20-29.

Vinik, A., Feliberti, E., et al. Insulinomas. *Endotext (Intenet)*.; July 3, 2017.

Vos N, Oyen R. Renal angiomyolipoma: The good, the bad, and the ugly. *J Belg Soc Radiol*. 2016 Apr; 102(1):41.

Wong CJ. Involuntary weight loss. *Med Clin North Am*. 2014; 98:625-643.
<https://www.ncbi.nlm.nih.gov/pubmed/24758965>. Retrieved February 15, 2018.

Reviewed / Approved by

Reviewed / Approved by

M. Atif Khalid MD AP, Medical Director

M. Atif Khalid, M.D., Medical Director, Radiology

Disclaimer: Magellan Healthcare service authorization policies do not constitute medical advice and are not intended to govern or otherwise influence the practice of medicine. These policies are not meant to supplant your normal procedures, evaluation, diagnosis, treatment and/or care plans for your patients. Your professional judgement must be exercised and followed in all respects with regard to the treatment and care of your patients. These policies apply to all Magellan Healthcare subsidiaries including, but not limited to, National Imaging Associates ("Magellan"). The policies constitute only the reimbursement and coverage guidelines of Magellan. Coverage for services varies for individual members in accordance with the terms and conditions of applicable Certificates of Coverage, Summary Plan Descriptions, or contracts with governing regulatory agencies. Magellan reserves the right to review and update the guidelines at its sole discretion. Notice of such changes, if necessary, shall be provided in accordance with the terms and conditions of provider agreements and any applicable laws or regulations.