Comparing the Efficacy of Weak Inducers and Good Substrates to Standard of Care to Treat AmpC Bacteremia

Brandon Nguyen, PharmD, AAHIVP Pharmacy Resident PGY-2 Infectious Diseases Brandon.nguyen3@lcmchealth.org

Disclosure

The speaker, planners, and individuals in position to control content have no relevant financial relationships to disclose

Abbreviations

Abbreviation	Definition	Abbreviation	Definition
AmpC-E	AmpC β-lactamase-producing <i>Enterobacterales</i>	AMR	Antimicrobial resistance
CRE	RE Carbapenem-resistant		Follow-up blood culture
	Enteropacterales		Third-generation cephalosporin
ESBL	Extended spectrum β -lactamase		
IDSA	Infectious Diseases Society of	CRO	Ceftriaxone
	America	FQ	Fluroquinolone
HECK Yes	Hafnia alvei. Enterobacter cloacae.		•
	Citrobacter freundii, Klebsiella	SMX/TMP	Sulfamethoxazole/trimethoprim
	aerogenes, Yersinia enterocolitica	TZP	Piperacillin/tazobactam
SPACE/SPICE	Serratia,		
	Providencia/Pseudomonas,	WIGS	Weak inducer, good substrate
	Proteus, Citrobacter, Enterobacter	WIPS	Weak inducer, poor substrate

Objectives

- 1. Recall differences in therapy between Gram-positive and Gram-negative bacteremia
- 2. Describe resistance patterns of AmpC and common AmpC β -lactamase-producing *Enterobacterales* (AmpC-E)
- 3. Assess the current Infectious Diseases Society of America (IDSA) recommendations on infections caused by AmpC-E
- 4. Evaluate the effectiveness of different antibiotics for the treatment of AmpC bacteremia

Gram-Negative Bacteremia

- Presence of viable bacteria in the bloodstream
 - 33-43% due to a Gram-negative organism
 - Enterobacterales sp.
 - Escherichia coli
 - Pseudomonas aeruginosa
- Gram-negative vs Gram-positive
 - Higher rates of septic shock
 - Higher rates of mortality
 - Longer hospital length of stay
- Considerations for treatment
 - Duration of therapy
 - Antimicrobial resistance (AMR)

5

Duration of Therapy: Bacteremia

	Gram-negative	Gram-positive (S. aureus)
Duration		
Uncomplicated	\geq 7 days	2-4 weeks
Complicated	10-14 days	6 – 8 weeks
Day 0 of therapy	Initiation of appropriate antibiotics	Date of first negative blood culture

Antimicrobial Resistance (AMR): A Global Crisis

World Health Organization (WHO)

- One of the top ten global public health threats facing humanity
- Due to misuse and overuse of antimicrobials

Centers for Disease Control and Prevention (CDC)

- Antibiotic Resistance Threats in the United States (2019)
 - Over 2.8 million infections
 - Over 35,000 deaths
- Most urgent and serious threats are Gram-negative organisms

7

Antimicrobial Resistance Mechanisms

University Medical Center New Orleans 🐓 LCMC Health

Enzymatic Resistance

- Inactivates drugs by degradation
- β-lactamase
 - Ambler classification: A, B, C, D
 - Hydrolysis mechanism
 - Not increasing coverage
- Overcome resistance
 - Changing drug class
 - Penicillin -> Sulfonamide
 - Enzyme inhibitor
 - Piperacillin + Tazobactam

University Medical Center New Orleans У LCMC Health

Infectious Diseases Society of America (IDSA) 2023 Guidance on the Treatment of AMR Infections

IDSA Treatment Considerations

Severity	• Mild • Moderate • Severe	
Site of infection	 Uncomplicated cystitis/urinary tract infection (UTI) Complicated cystitis/pyelonephritis Infections outside the urinary tract 	
AMR Organism	 Enterobacterales sp. Pseudomonas aeruginosa Acinetobacter baumannii Stenotrophomonas maltophilia 	

University Medical Center New Orleans 🗩 LCMC Health

Enterobacterales sp.

- Previously called Enterobacteriaceae
 - Family of Gram-negative bacilli
- Natural habitat
 - "Entero" pertaining to the intestines
 - Gut flora
- Typical susceptibility
 - Organism dependent
 - 1st-3rd generation cephalosporin
- Resistance categories
 - Extended-spectrum β -lactamase (ESBL)
 - Carbapenem-Resistant Enterobacterales (CRE)
 - AmpC β-lactamase

AmpC β-lactamase

- Ambler class C β-lactamase
 - Assists with cell wall recycling
 - Targets and degrades β-lactam antibiotics
 - Basal levels: penicillin, cephamycin
 - Hyperexpression: 3rd generation cephalosporins
 - No effect on non- β -lactam antibiotics
- Increasing AmpC production
 - Induction
 - Exposure to initially susceptible β-lactam
 - May develop resistance during/after treatment
 - Stable gene de-repression
 - Plasmid-mediated resistance

Bacteria	Penicillins	1 st Gen Ceph.	2 nd Gen Ceph.	3 rd Gen. Ceph.	4 th Gen. Ceph.	Carbapenems	β-lactamase inhibitors <i>in</i> <i>vitro</i>	Aztreonam
Low level AmpC	R	V	S	S	S	S	R	S
High level AmpC	R	R	R	R	S	S	R	R

AmpC Producing Organisms

SPACE/SPICE

- Serratia
- Providencia/Pseudomonas
- Acinetobacter/Indole-positive
 Proteus
- Citrobacter
- Enterobacter
- Does not address range of inducibility
- Does not address differences of species

Treatment Considerations

β-lactams	Strong Inducer	Weak Inducer			
Good Substrate	Aminopenicillins, 1 st generation cephalosporins. Cefoxitin, Cefotetan	Ceftazidime, Ceftriaxone, Cefotaxime, Piperacillin, Ticarcillin, Aztreonam " WIGS " = ???			
Poor Substrate	Imipenem	Cefepime, Meropenem " WIPS" = Preferred			
Non-β-lactams	No effect on induction or substrate Fluroquinolones (FQ), Sulfamethoxazole/trimethoprim (SMX/TMP)				
Inducer – Increases Ar Substrate – Susceptibl	npC production e to AmpC hydrolysis				

AmpC Induction Example

	Enterobact	ter cloacae complex MIC		Enterobac	ter cloacae complex MIC
Amikacin	<=8	Susceptible *		<=8	Susceptible *
Amoxicillin/Clavulanic Acid	>16/8 Resistant *		>16/8	Resistant *	
Ampicillin	>16	Resistant *		>16	Resistant *
AMPICILLIN/SULBACTAM	>16/8	Resistant *	Exposure to cefazolin	>16/8	Resistant *
Aztreonam	<=4	Susceptible *		16	Resistant
Cefazolin	>16	Resistant *		>16	Resistant *
Cefepime	<=2	Susceptible	 Good substrate) 	>16	Resistant
Cefotaxime	<=2	Susceptible *		>32	Resistant *
Cefoxitin	>16	Resistant *		>16	Resistant *
Ceftazidime	<=1	Susceptible *		>16	Resistant *
Ceftriaxone	<=1	Susceptible *		>32	Resistant *
Cefuroxime	>16	Resistant		>16	Resistant

Weak Inducers Good Substrates (WIGS)

Ceftriaxone (CRO)

- Induction potential uncertain
 - Most studies mix weak with high-risk AmpC producers
 - Possibly noninferior to cefepime in clinical outcomes
- Not recommended for moderate to high risk AmpC producers
- Reasonable for treating uncomplicated cystitis

Piperacillin/tazobactam (TZP)

- Tazobactam less effective from protecting against AmpC hydrolysis
- Possibly noninferior to meropenem in clinical outcomes
- Possible increase in microbiologic failure
- Not recommended for serious infections caused by AmpC Enterobacterales

Previous Literature: Ceftriaxone

	Evaluating Third-Generation Cephalosporins for Bloodstream Infections Secondary to AmpC Organisms
Study design	Multicenter Retrospective Observational cohort
Population	Adult (≥ 18 years) Definitive bloodstream infection due to a AmpC producer (SPACE/SPICE)
Intervention	3 rd generation cephalosporin (3GC) (n=65) Non-3 rd generation cephalosporin (non-3GC) (n=316)
Result	Treatment failure 3GC: 33.8% Non-3GC: 29.7% p = 0.513

University Medical Center New Orleans 🗩 LCMC Health

Previous Literature: TZP

Which of the following organisms is a moderate to high risk AmpC producing organism?

- A. Serratia marcescens
- B. Citrobacter freundii
- C. Citrobacter koseri
- D. Escherichia coli

Comparing WIGS vs WIPS and nonβ-lactams

Purpose

Evaluate the efficacy of WIGS compared to standard of care for the treatment of bacteremia caused by moderate to high risk AmpC producing organisms.

Institutional Review Board approved

Multi-center, retrospective chart review

6 sites within Louisiana Children's Medical Center health system

January 2017 to December 2023

Inclusion/Exclusion Criteria

Inclusion

- Age \geq 18 years
- Inpatient status
- \geq 1 blood culture detecting:
 - Hafnia alvei
 - Enterobacter cloacae
 - Citrobacter freundii
 - Klebsiella aerogenes
 - Yersinia enterocolitica

Exclusion

- Antibiotic initiated at an outside hospital
- Baseline resistance to study antibiotics
- Polymicrobial blood cultures
- Discharge against medical advice
- > 48 hours on study and control antibiotic for definitive therapy
- No definitive therapy

Study Groups

Study

- WIGS
 - Ceftriaxone
 - Piperacillin/tazobactam

Control

- WIPS
 - Cefepime
 - Meropenem
- Non- β -lactam antibiotic
 - Fluoroquinolone
 - SMX/TMP

Outcomes

Primary

• 30-day all-cause mortality

Secondary

- Microbiologic failure
- Microbiologic relapse
- Development of AmpC-mediated resistance
- Hospital length of stay

Statistical Analysis

Power

• 1531 patients for 80% power

Primary

• Fischer's exact

Secondary

- Fischer's exact
- Mann-Whitney U test

Results

Study Population

University Medical Center New Orleans 🗩 LCMC Health

Exclusion Population

Reason for Exclusion (n=212)

- Polymicrobial (n=79)
- Age < 18 (n=64)</p>
- Baseline resistance (n=36)
- No definitive therapy (n=14)
- Overlapping therapy (n=9)
- Against medical advice (n=6)
- Antibiotics at outside hospital (n=4)

Baseline Characteristics

Baseline Demographics	Study (n=19)	Control (n=76)	P-value
Median age, years (IQR)	56 (44 – 74)	54 (38 - 64)	0.189
Male, n (%)	13 (68)	49 (64)	0.795
Race, n (%)			0.199
White Black/African American	12 (63) 6 (32)	27 (36) 38 (50)	-
Infectious diseases consult, n (%)	6 (32)	37 (49)	0.198
Median Pitt bacteremia score (IQR)	3 (1 – 3)	2 (0 – 2)	0.239
Median duration of therapy, day (IQR)	10 (7 – 14)	14 (11 – 16)	0.032
Empiric duration Definitive duration	3 (2 – 4) 7 (4 – 10)	1 (1 – 3) 13 (9 – 14)	0.320 0.002
Repeat blood culture, n (%)	18 (95)	56 (74)	0.063

University Medical Center New Orleans 🗩 LCMC Health

Therapy Location

Study (n=19)

Control (n=76)

Hospital 6

University Medical Center New Orleans 🗩 LCMC Health

Culture Data

Organism, n (%)	Study (n=19)	Control (n=76)	p-value
E. cloacae	11 (58)	55 (72)	0.268
C. freundii	1 (5)	3 (4)	0.896
H. alvei	1 (5)	1 (1)	0.362
K. aerogenes	6 (32)	17 (22)	0.388
Y. enterocolitica	0	0	-
Source of infection, n (%)	Study (n=19)	Control (n=76)	p-value
Source of infection, n (%) Intra-abdominal	Study (n=19) 7 (37)	Control (n=76) 16 (22)	p-value 0.229
Source of infection, n (%) Intra-abdominal Genitourinary	Study (n=19) 7 (37) 5 (26)	Control (n=76) 16 (22) 22 (29)	p-value 0.229 0.892
Source of infection, n (%) Intra-abdominal Genitourinary Catheter-related	Study (n=19) 7 (37) 5 (26) 3 (16)	Control (n=76) 16 (22) 22 (29) 18 (24)	p-value 0.229 0.892 0.552

Empiric Therapy

Gram-negative antibiotic, n (%)	Study (n=19)	Control (n=76)	p-value
Piperacillin-tazobactam	9 (47)	31 (41)	0.614
Cefepime	6 (32)	19 (25)	0.569
Ceftriaxone	1 (5)	10 (13)	0.454
Fluroquinolone	0	3 (4)	0.656
Meropenem	0	4 (5)	0.580
Other	1 (5)	4 (5)	1
None	2 (11)	5 (7)	0.624

Definitive Therapy

Study (n=19) 37% 63% TZP (n=12) CRO (n=7)

Control (n=76)

■ FQ (n=27) ■ MER (n=10) FEP (n=20)
Two control (n=19)

University Medical Center New Orleans 👽 LCMC Health

Primary Outcome: 30-Day Mortality

Study (n=19)

Control (n=76)

University Medical Center New Orleans 🗩 LCMC Health

Secondary Outcomes

Secondary Outcomes	Study (n=19)	Control (n=76)	p-value
Microbiologic failure, n (%)	1 (5)	4 (5)	1
Microbiologic relapse, n (%)	-	-	-
Development of AmpC-mediated resistance, n (%)	-	-	-
Hospital-LOS, median (IQR)	10 (6.5 - 32.5)	12.5 (5 – 33.5)	0.798

Discussion and Conclusion

Discussion

The most common AmpC producing organism *E. cloacae*

Majority of patients treated with guideline-directed therapy

Longer duration of therapy in control group

30-day mortality was more than double in patients receiving WIGS compared to standard of care

High proportion of Gram-negative repeat blood cultures

Repeat Blood Cultures

Reason for Repeat Blood Culture (n=74)

Strengths and Limitations

Strengths

- Evaluation of moderate-high risk AmpC organisms
- Clinically relevant

Limitations

- Small sample size
- Retrospective
- Expanding health-system

Conclusion

Conclusion

- WIGS should not be recommended to treat bacteremia caused by moderate-high AmpC producing organisms.
- The results from this study support current guideline recommendations from the IDSA on AmpC infections.

Future Direction

- Reduce use of WIGS for AmpC bacteremia
- Reduce repeat blood cultures for Gram-negative bacteremia for clearance
- Reduce duration of therapy to 7 days for Gram-negative bacteremia

Case Assessment #2

- Day 1
 - RC is a 55 year old female presents to the emergency department with dysuria and fever of 100.8^oF.
 - Blood and urine cultures are taken before she is started on empiric vancomycin and cefepime.
 - Urinalysis is positive for white blood cells, bacteria, and leukocyte esterase. Squamous epithelial cells 0-20. Reflex to urine culture
- Day 2
 - Blood cultures: Gram-negative rods (2/2)
 - Urine culture: Gram-negative rods >100 k
 - Vancomycin is discontinued

Case Assessment #2 (continued)

Later on day 2, culture results come back detecting *E. cloacae*. What would be the preferred treatment option?

- A. Ceftriaxone
- B. Cefazolin

C. Cefepime

D. Meropenem

	Enterobacter cloacae complex MIC	
Amikacin	<=8	Susceptible *
Amoxicillin/Clavulanic Acid	>16/8	Resistant *
Ampicillin	>16	Resistant *
AMPICILLIN/SULBACTAM	>16/8	Resistant
Aztreonam	<=4	Susceptible *
Cefazolin	>16	Resistant *
Cefepime	<=2	Susceptible
Cefotaxime	<=2	Susceptible *
Cefoxitin	>16	Resistant *
Ceftazidime	<=1	Susceptible *
Ceftriaxone	<=1	Susceptible *
Cefuroxime	>16	Resistant *

University Medical Center New Orleans 🗩 LCMC Health

Case Assessment #3

After initiating appropriate therapy, her symptoms have resolved and the team classifies her bacteremia as uncomplicated. What would be the shortest duration of therapy?

- A. 7 days from initiation of therapy
- B. 7 days from first negative blood culture
- C. 14 days from initiation of therapy
- D. 14 days from first negative blood culture

	Enterobacter cloacae complex MIC	
Amikacin	<=8 Susceptible *	
Amoxicillin/Clavulanic Acid	>16/8 Resistant *	
Ampicillin	>16 Resistant *	
AMPICILLIN/SULBACTAM	>16/8 Resistant *	
Aztreonam	<=4 Susceptible *	
Cefazolin	>16 Resistant *	
Cefepime	<=2 Susceptible	
Cefotaxime	<=2 Susceptible *	
Cefoxitin	>16 Resistant *	
Ceftazidime	<=1 Susceptible *	
Ceftriaxone	<=1 Susceptible *	
Cefuroxime	>16 Resistant *	

Take-Away Points

Antimicrobial resistance is a growing concern, especially with Gram-negative organisms.

AmpC is an inducible resistance mechanism with the highest concern in HECK Yes.

WIPS and non- β -lactams are preferred to treat infections caused by moderate-high AmpC producing organisms.

Acknowledgements

Brenda Simiyu, PharmD, BCPS, BCIDP, AAHIVP

Gabriela Andonie, PharmD, BCIDP, AAHIVP

Wade Wheat, PharmD, BCIDP, AAHIVP

Fatima Brakta, PharmD, BCPS

Tat Yau, MD, MPH

CE Code Pharmacist

23EK9B

Comparing the Efficacy of Weak Inducers and Good Substrates to Standard of Care to Treat AmpC Bacteremia

Brandon Nguyen, PharmD, AAHIVP Pharmacy Resident PGY-2 Infectious Diseases Brandon.nguyen3@lcmchealth.org

